contributed equally to this work Raf-1 protein kinase has been identi®ed as an integral component of the Ras/Raf/MEK/ERK signalling pathway in mammals. Activation of Raf-1 is achieved by Ras.GTP binding and other events at the plasma membrane including tyrosine phosphorylation at residues 340/341. We have used gene targeting to generate a`knockout' of the raf-1 gene in mice as well as a rafFF mutant version of endogenous Raf-1 with Y340FY341F mutations. Raf-1 ±/± mice die in embryogenesis and show vascular defects in the yolk sac and placenta as well as increased apoptosis of embryonic tissues. Cell proliferation is not affected. Raf-1 from cells derived from raf-1 FF/FF mice has no detectable activity towards MEK in vitro, and yet raf-1 FF/FF mice survive to adulthood, are fertile and have an apparently normal phenotype. In cells derived from both the raf-1 ±/± and raf-1 FF/FF mice, ERK activation is normal. These results strongly argue that MEK kinase activity of Raf-1 is not essential for normal mouse development and that Raf-1 plays a key role in preventing apoptosis.
Mutations of the human B-RAF gene are detected in f8% of cancer samples, primarily in cutaneous melanomas (70%). The most common mutation (90%) is a valine-to-glutamic acid mutation at residue 600 (V600E; formerly V599E according to previous nomenclature). Using a Cre/Lox approach, we have generated a conditional knock-in allele of V600E B-raf in mice. We show that widespread expression of V600E B-Raf cannot be tolerated in embryonic development, with embryos dying f7.5 dpc. Directed expression of mutant V600E B-Raf to somatic tissues using the IFN-inducible Mx1-Cre mouse strain induces a proliferative disorder and bone marrow failure with evidence of nonlymphoid neoplasia of the histiocytic type leading to death within 4 weeks of age. However, expression of mutant B-Raf does not alter the proliferation profile of all somatic tissues. In primary mouse embryonic fibroblasts, expression of endogenous V600E B-Raf induces morphologic transformation, increased cell proliferation, and loss of contact inhibition. Thus, V600E
The CRAF protein kinase regulates proliferative, differentiation, and survival signals from activated RAS proteins to downstream effectors, most often by inducing MEK/ERK activation. A well-established model of CRAF regulation involves RAS-mediated translocation of CRAF to the plasma membrane, where it is activated by a series of events including phosphorylation. Here we have discovered a new mode of regulation that occurs prior to this step. By creating a kinase-defective version of CRAF in mice or by use of the RAF inhibitor sorafenib, we show that CRAF must first undergo autophosphorylation of serine 621 (S621). Autophosphorylation occurs in cis, does not involve MEK/ERK activation, and is essential to ensure the correct folding and stability of the protein. In the absence of S621 phosphorylation, CRAF is degraded by the proteasome by mechanisms that do not uniquely rely on the E3 ubiquitin ligase CHIP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.