The approval of bedaquiline to treat tuberculosis has validated adenosine triphosphate (ATP) synthase as an attractive target to kill Mycobacterium tuberculosis (Mtb). Herein, we report the discovery of two diverse lead series imidazo[1,2-a]pyridine ethers (IPE) and squaramides (SQA) as inhibitors of mycobacterial ATP synthesis. Through medicinal chemistry exploration, we established a robust structure-activity relationship of these two scaffolds, resulting in nanomolar potencies in an ATP synthesis inhibition assay. A biochemical deconvolution cascade suggested cytochrome c oxidase as the potential target of IPE class of molecules, whereas characterization of spontaneous resistant mutants of SQAs unambiguously identified ATP synthase as its molecular target. Absence of cross resistance against bedaquiline resistant mutants suggested a different binding site for SQAs on ATP synthase. Furthermore, SQAs were found to be noncytotoxic and demonstrated efficacy in a mouse model of tuberculosis infection.
Aims: Carbon monoxide (CO) delivered to cells and tissues by CO-releasing molecules (CO-RMs) has beneficial and toxic effects not mimicked by CO gas. The metal carbonyl Ru(CO) 3 Cl(glycinate) (CORM-3) is a novel, potent antimicrobial agent. Here, we established its mode of action. Results: CORM-3 inhibits respiration in several bacterial and yeast pathogens. In anoxic Escherichia coli suspensions, CORM-3 first stimulates, then inhibits respiration, but much higher concentrations of CORM-3 than of a classic protonophore are required for stimulation. Proton translocation measurements (H + /O quotients, i.e., H + extrusion on pulsing anaerobic cells with O 2
Salmonella
Typhi activates the host DNA damage response through the typhoid toxin, facilitating typhoid symptoms and chronic infections. Here we reveal a non-canonical DNA damage response, which we call RING (response induced by a genotoxin), characterized by accumulation of phosphorylated histone H2AX (γH2AX) at the nuclear periphery. RING is the result of persistent DNA damage mediated by toxin nuclease activity and is characterized by hyperphosphorylation of RPA, a sensor of single-stranded DNA (ssDNA) and DNA replication stress. The toxin overloads the RPA pathway with ssDNA substrate, causing RPA exhaustion and senescence. Senescence is also induced by canonical γΗ2ΑΧ foci revealing distinct mechanisms. Senescence is transmitted to non-intoxicated bystander cells by an unidentified senescence-associated secreted factor that enhances
Salmonella
infections. Thus, our work uncovers a mechanism by which genotoxic
Salmonella
exhausts the RPA response by inducing ssDNA formation, driving host cell senescence and facilitating infection.
Bacterial vaginosis is a genital tract infection, thought to be caused by transformation of a lactobacillus-rich flora to a dysbiotic microbiota enriched in mixed anaerobes. The most prominent of these is Gardnerella vaginalis (GV), an anaerobic pathogen that produces sialidase enzyme to cleave terminal sialic acid residues from human glycans. Notably, high sialidase activity is associated with preterm birth and low birthweight. We explored the potential of the sialidase inhibitor Zanamavir against GV whole cell sialidase activity using methyl–umbelliferyl neuraminic acid (MU-NANA) cleavage assays, with Zanamavir causing a 30% reduction in whole cell GV sialidase activity (p < 0.05). Furthermore, cellular invasion assays using HeLa cervical epithelial cells, infected with GV, demonstrated that Zanamivir elicited a 50% reduction in cell association and invasion (p < 0.05). Our data thus highlight that pharmacological sialidase inhibitors are able to modify BV-associated sialidase activity and influence host–pathogen interactions and may represent novel therapeutic adjuncts.
The periodontal pathogen Tannerella forsythia expresses several glycosidases which are linked to specific growth requirements and are involved in the invasion of host tissues. α-l-Fucosyl residues are exposed on various host glycoconjugates and, thus, the α-l-fucosidases predicted in the T. forsythia ATCC 43037 genome could potentially serve roles in host-pathogen interactions. We describe the molecular cloning and characterization of the putative fucosidase TfFuc1 (encoded by the bfo_2737 = Tffuc1 gene), previously reported to be present in an outer membrane preparation. In terms of sequence, this 51-kDa protein is a member of the glycosyl hydrolase family GH29. Using an artificial substrate, p-nitrophenyl-α-fucose (KM 670 μM), the enzyme was determined to have a pH optimum of 9.0 and to be competitively inhibited by fucose and deoxyfuconojirimycin. TfFuc1 was shown here to be a unique α(1,2)-fucosidase that also possesses α(1,6) specificity on small unbranched substrates. It is active on mucin after sialidase-catalyzed removal of terminal sialic acid residues and also removes fucose from blood group H. Following knock-out of the Tffuc1 gene and analyzing biofilm formation and cell invasion/adhesion of the mutant in comparison to the wild-type, it is most likely that the enzyme does not act extracellularly. Biochemically interesting as the first fucosidase in T. forsythia to be characterized, the biological role of TfFuc1 may well be in the metabolism of short oligosaccharides in the periplasm, thereby indirectly contributing to the virulence of this organism. TfFuc1 is the first glycosyl hydrolase in the GH29 family reported to be a specific α(1,2)-fucosidase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.