Advanced age-related macular degeneration (AMD) is the leading cause of blindness in the elderly with limited therapeutic options. Here, we report on a study of >12 million variants including 163,714 directly genotyped, most rare, protein-altering variant. Analyzing 16,144 patients and 17,832 controls, we identify 52 independently associated common and rare variants (P < 5×10–8) distributed across 34 loci. While wet and dry AMD subtypes exhibit predominantly shared genetics, we identify the first signal specific to wet AMD, near MMP9 (difference-P = 4.1×10–10). Very rare coding variants (frequency < 0.1%) in CFH, CFI, and TIMP3 suggest causal roles for these genes, as does a splice variant in SLC16A8. Our results support the hypothesis that rare coding variants can pinpoint causal genes within known genetic loci and illustrate that applying the approach systematically to detect new loci requires extremely large sample sizes.
Refractive error is the most common eye disorder worldwide, and a prominent cause of blindness. Myopia affects over 30% of Western populations, and up to 80% of Asians. The CREAM consortium conducted genome-wide meta-analyses including 37,382 individuals from 27 studies of European ancestry, and 8,376 from 5 Asian cohorts. We identified 16 new loci for refractive error in subjects of European ancestry, of which 8 were shared with Asians. Combined analysis revealed 8 additional loci. The new loci include genes with functions in neurotransmission (GRIA4), ion channels (KCNQ5), retinoic acid metabolism (RDH5), extracellular matrix remodeling (LAMA2, BMP2), and eye development (SIX6, PRSS56). We also confirmed previously reported associations with GJD2 and RASGRF1. Risk score analysis using associated SNPs showed a tenfold increased risk of myopia for subjects with the highest genetic load. Our results, accumulated across independent multi-ethnic studies, considerably advance understanding of mechanisms involved in refractive error and myopia.
A genome-wide association study (GWAS) for open angle glaucoma (OAG) blindness was conducted using a discovery cohort of 590 cases with severe visual field loss and 3956 controls. Genome-wide significant associations were identified at TMCO1 (rs4656461 (G) OR=1.68, p=6.1x10 -10 ) and CDKN2B-AS1 (rs4977756 (A) OR = 1.50, p=4.7x10 -9 ). These findings were replicated in a second cohort of advanced OAG cases (rs4656461 p=0.010; rs4977756 p=0.042) and two further cohorts of less severe OAG. The study wide odds ratios are 1.51 (1.35-1.68), p=6.00x10 -14 at TMCO1, and 1.39 (1.28-1.51), p=1.35x10 -14 at CDKN2B-AS1 (also known as CDKN2BAS and ANRIL). Carriers of 1 or more risk alleles at both loci concurrently are at >3-fold increased risk of glaucoma. We demonstrate retinal expression of genes at both loci, and show that CDKN2A and CDKN2B are strongly upregulated in an animal model of glaucoma.Glaucoma is a group of neurodegenerative ocular diseases united by a clinically characteristic optic neuropathy. It is the second leading cause of blindness worldwide 1 . Primary open angle glaucoma (OAG) is the commonest subtype 1 . OAG pathogenesis and factors determining disease progression are poorly understood. Early intervention with measures to reduce intraocular pressure retards visual loss in most individuals 2 , but many cases of glaucoma remain undiagnosed until irreversible vision loss has occurred. Elucidation of SNPs associated with severe outcomes could enable better targeting of treatments which carry cost and morbidity, to individuals at highest risk of blindness. Linkage and candidate gene studies have identified several genes likely to be involved in OAG including myocilin 3 and NTF4 4 , although for the latter, findings have varied in different populations 5 . A recent GWAS using Icelandic OAG cases of unselected severity identified association with variants near CAV1 6 . To identify genes predisposing individuals to OAG blindness, we performed a GWAS in Australian Caucasians with advanced OAG (individuals with OAG who have progressed to severe visual field loss or blindness).
Central corneal thickness (CCT) is associated with eye conditions including keratoconus and glaucoma. We performed a meta-analysis on >20,000 individuals in European and Asian populations that identified 16 new loci associated with CCT at genome-wide significance (P < 5 × 10−8). We further showed that 2 CCT-associated loci, FOXO1 and FNDC3B, conferred relatively large risks for keratoconus in 2 cohorts with 874 cases and 6,085 controls (rs2721051 near FOXO1 had odds ratio (OR) = 1.62, 95% confidence interval (CI) = 1.4–1.88, P = 2.7 × 10−10, and rs4894535 in FNDC3B had OR = 1.47, 95% CI = 1.29–1.68, P = 4.9 × 10−9). FNDC3B was also associated with primary open-angle glaucoma (P = 5.6 × 10−4; tested in 3 cohorts with 2,979 cases and 7,399 controls). Further analyses implicate the collagen and extracellular matrix pathways in the regulation of CCT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.