SummaryWe investigated the role of listeriolysin O (LLO) and the bacterial phospholipases PI-PLC and PC-PLC in cell-to-cell spread of Listeria monocytogenes. We showed that LLO is essential for cell-to-cell spread in primary murine macrophages. Electron micrographs revealed that in the absence of continued LLO expression, bacteria remain trapped in secondary spreading vacuoles having either a double or single membrane. In bacteria lacking PI-PLC and PC-PLC, cessation of LLO expression after initiation of infection resulted in a significant increase in the proportion of bacteria trapped in double-membrane compartments. We propose that the bacterial phospholipases are involved in the dissolution of the inner membrane of the spreading vacuole, yet are not sufficient for disruption of the outer membrane. As a consequence, we identified LLO as a key factor in the disruption of the outer membrane. This model is consistent with the observation that LLO is dispensable for cell-to-cell spread from human macrophages into a cell type in which LLO is not required for vacuolar escape. These data suggest that during human infection, spreading of L. monocytogenes to distant organs is likely to occur even in the absence of LLO expression, and that the bacterial phospholipases may be sufficient to mediate continued cell-to-cell spread.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.