Summary• It has long been believed that plant species from the tropics have higher levels of traits associated with resistance to herbivores than do species from higher latitudes. A meta-analysis recently showed that the published literature does not support this theory. However, the idea has never been tested using data gathered with consistent methods from a wide range of latitudes.• We quantified the relationship between latitude and a broad range of chemical and physical traits across 301 species from 75 sites world-wide.• Six putative resistance traits, including tannins, the concentration of lipids (an indicator of oils, waxes and resins), and leaf toughness were greater in highlatitude species. Six traits, including cyanide production and the presence of spines, were unrelated to latitude. Only ash content (an indicator of inorganic substances such as calcium oxalates and phytoliths) and the properties of species with delayed greening were higher in the tropics.• Our results do not support the hypothesis that tropical plants have higher levels of resistance traits than do plants from higher latitudes. If anything, plants have higher resistance toward the poles. The greater resistance traits of high-latitude species might be explained by the greater cost of losing a given amount of leaf tissue in low-productivity environments.
SummaryMost plant species have a range of traits that deter herbivores. However, understanding of how different defences are related to one another is surprisingly weak. Many authors argue that defence traits trade off against one another, while others argue that they form coordinated defence syndromes.We collected a dataset of unprecedented taxonomic and geographic scope (261 species spanning 80 families, from 75 sites across the globe) to investigate relationships among four chemical and six physical defences.Five of the 45 pairwise correlations between defence traits were significant and three of these were tradeoffs. The relationship between species' overall chemical and physical defence levels was marginally nonsignificant (P = 0.08), and remained nonsignificant after accounting for phylogeny, growth form and abundance. Neither categorical principal component analysis (PCA) nor hierarchical cluster analysis supported the idea that species displayed defence syndromes.Our results do not support arguments for tradeoffs or for coordinated defence syndromes. Rather, plants display a range of combinations of defence traits. We suggest this lack of consistent defence syndromes may be adaptive, resulting from selective pressure to deploy a different combination of defences to coexisting species.
Coffee is one of the most important globally traded commodities and substantially contributes to the livelihoods of millions of smallholders worldwide. As a climate-sensitive perennial crop, coffee is likely to be highly susceptible to changes in climate. Using a systematic approach, we explore evidence from the published academic literature of the influence of climate change and variability, specifically drought, on coffee production. A number of mostly negative impacts were reported in the current literature, including declines in coffee yield, loss of coffee-optimal areas with significant impacts on major global coffee-producing countries and growth in the distribution of pest and disease that indirectly influence coffee cultivation. Current research also identified positive effects of climate change such as increases in coffee-producing niche, particularly in areas at higher altitudes; however, whether these gains might offset losses from other production areas requires further investigation. Other advantages include increases in pollination services and the beneficial effects of elevated carbon concentration, leading to potential yield improvements. Future priorities should focus on major coffee-growing regions projected to be adversely affected by climate change, with specific attention given to potential adaptation strategies tailored to particular farming conditions such as relocation of coffee plantations to more climatically suitable areas, irrigation and agroforestry. The majority of studies were based in the Americas and concentrated on Arabica coffee. A broader spread of research is therefore required, especially for the large growing regions in Asia and for Robusta coffee, to support sustainable production of the global coffee industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.