Low hypodiploidy (30–39 chromosomes) is one of the most prevalent genetic subtypes among adults with ALL and is associated with a very poor outcome. Low hypodiploid clones can often undergo a chromosomal doubling generating a near‐triploid clone (60–78 chromosomes). When cytogenetic techniques detect a near triploid clone, a diagnostic challenge may ensue in differentiating presumed duplicated low hypodiploidy from good risk high hyperdiploid ALL (51–67 chromosomes). We used single‐nucleotide polymorphism (SNP) arrays to analyze low hypodiploid/near triploid (HoTr) (n = 48) and high hyperdiploid (HeH) (n = 40) cases. In addition to standard analysis, we derived log2 ratios for entire chromosomes enabling us to analyze the cohort using machine‐learning techniques. Low hypodiploid and near triploid cases clustered together and separately from high hyperdiploid samples. Using these approaches, we also identified three cases with 50–60 chromosomes, originally called as HeH, which were, in fact, HoTr and two cases incorrectly called as HoTr. TP53 mutation analysis supported the new classification of all cases tested. Next, we constructed a classification and regression tree model for predicting ploidy status with chromosomes 1, 7, and 14 being the key discriminators. The classifier correctly identified 47/50 (94%) HoTr cases. We validated the classifier using an independent cohort of 44 cases where it correctly called 7/7 (100%) low hypodiploid cases. The results of this study suggest that HoTr is more frequent among older adults with ALL than previously estimated and that SNP array analysis should accompany cytogenetics where possible. The classifier can assist where SNP array patterns are challenging to interpret.
Human chromosome 2 contains large blocks of segmental duplications (SDs), both within and between proximal 2p and proximal 2q, and these may contribute to the frequency of the common variant inversion inv(2)(p11.2q13). Despite their being cytogenetically homogeneous, we have identified four different breakpoint combinations by fluorescence in situ hybridization mapping of 40 cases of inv(2)(p11.2q13) of European origin. For the vast majority of inversions (35/40), the breakpoints fell within the same spanning BACs, which hybridized to both 2p11.2 and 2q13 on the normal and inverted homologues. Sequence analysis revealed that these BACs contain a significant proportion of intrachromosomal SDs with sequence homology to the reciprocal breakpoint region. In contrast, BACs spanning the rare breakpoint combinations contain fewer SDs and with sequence homology only to the same chromosome arm. Using haplotype analysis, we identified a number of related family subgroups with identical or very closely related haplotypes. However, the majority of cases were not related, demonstrating for the first time that the inv(2)(p11.2q13) is a truly recurrent rearrangement. Therefore, there are three explanations to account for the frequent observation of the inv(2)(p11.2q13): the majority have arisen independently in different ancestors, while a minority either have been transmitted from a common founder or have different breakpoints at the molecular cytogenetic level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.