Summary Noncoding expansions of a hexanucleotide repeat (GGGGCC) in the C9orf72 gene are the most common cause of familial amyotrophic lateral sclerosis and frontotemporal dementia. Here we report transgenic mice carrying a bacterial artificial chromosome (BAC) containing the full human C9orf72 gene with either a normal allele (15 repeats) or disease-associated expansion (~100-1000 repeats; C9-BACexp). C9-BACexp mice displayed pathologic features seen in C9orf72 expansion patients, including widespread RNA foci and repeat associated non-ATG (RAN) translated dipeptides, which were suppressed by antisense oligonucleotides targeting human C9orf72. Nucleolin distribution was altered supporting that either C9orf72 transcripts or RAN dipeptides promote nucleolar dysfunction. Despite early and widespread production of RNA foci and RAN dipeptides in C9-BACexp mice, behavioral abnormalities and neurodegeneration were not observed even at advanced ages, supporting the hypothesis that RNA foci and RAN dipeptides occur presymptomatically, and are not sufficient to drive neurodegeneration in mice at levels seen in patients.
Hexanucleotide repeat expansions of C9orf72 are the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal degeneration. The mutation is associated with reduced C9orf72 expression and the accumulation of potentially toxic RNA and protein aggregates. CpG methylation is known to protect the genome against unstable DNA elements and to stably silence inappropriate gene expression. Using bisulfite cloning and restriction enzyme-based methylation assays on DNA from human brain and peripheral blood, we observed CpG hyper-methylation involving the C9orf72 promoter in cis to the repeat expansion mutation in approximately one-third of C9orf72 repeat expansion mutation carriers. Promoter hypermethylation of mutant C9orf72 was associated with transcriptional silencing of C9orf72 in patient-derived lymphoblast cell lines, resulting in reduced accumulation of intronic C9orf72 RNA and reduced numbers of RNA foci. Furthermore, demethylation of mutant C9orf72 with 5-aza-deoxycytidine resulted in increased vulnerability of mutant cells to oxidative and autophagic stress. Promoter hypermethylation of repeat expansion carriers was also associated with reduced accumulation of RNA foci and dipeptide repeat protein aggregates in human brains. These results indicate that C9orf72 promoter hypermethylation prevents downstream molecular aberrations associated with the hexanucleotide repeat expansion, suggesting that epigenetic silencing of the mutant C9orf72 allele may represent a protective counter-regulatory response to hexanucleotide repeat expansion.
C9orf72 promoter hypermethylation inhibits the accumulation of pathologies which have been postulated to be neurotoxic. We tested here whether C9orf72 hypermethylation is associated with prolonged disease in C9orf72 mutation carriers. C9orf72 methylation was quantified from brain or blood using methylation-sensitive restriction enzyme digest-qPCR in a cross-sectional cohort of 118 C9orf72 repeat expansion carriers and 19 non-carrier family members. Multivariate regression models were used to determine whether C9orf72 hypermethylation was associated with age at onset, disease duration, age at death, or hexanucleotide repeat expansion size. Permutation analysis was performed to determine whether C9orf72 methylation is heritable. We observed a high correlation between C9orf72 methylation across tissues including cerebellum, frontal cortex, spinal cord and peripheral blood. While C9orf72 methylation was not significantly different between ALS and FTD and did not predict age at onset, brain and blood C9orf72 hypermethylation was associated with later age at death in FTD (brain: β = 0.18, p = 0.006; blood: β = 0.15, p < 0.001), and blood C9orf72 hypermethylation was associated with longer disease duration in FTD (β = 0.03, p = 0.007). Furthermore, C9orf72 hypermethylation was associated with smaller hexanucleotide repeat length (β = −16.69, p = 0.033). Finally, analysis of pedigrees with multiple mutation carriers demonstrated a significant association between C9orf72 methylation and family relatedness (p < 0.0001). C9orf72 hypermethylation is associated with prolonged disease in C9orf72 repeat expansion carriers with FTD. The attenuated clinical phenotype associated with C9orf72 hypermethylation suggests that slower clinical progression in FTD is associated with reduced expression of mutant C9orf72. These results support the hypothesis that expression of the hexanucleotide repeat expansion is associated with a toxic gain of function.
Myelin is required for rapid nerve signaling and is emerging as a key driver of CNS plasticity and disease. How myelin is built and remodeled remains a fundamental question of neurobiology. Central to myelination is the ability of oligodendrocytes to add vast amounts of new cell membrane, expanding their surface areas by many thousand-fold. However, how oligodendrocytes add new membrane to build or remodel myelin is not fully understood. Here, we show that CNS myelin membrane addition requires exocytosis mediated by the vesicular SNARE proteins VAMP2/3. Genetic inactivation of VAMP2/3 in myelinating oligodendrocytes caused severe hypomyelination and premature death without overt loss of oligodendrocytes. Through live imaging, we discovered that VAMP2/3-mediated exocytosis drives membrane expansion within myelin sheaths to initiate wrapping and power sheath elongation. In conjunction with membrane expansion, mass spectrometry of oligodendrocyte surface proteins revealed that VAMP2/3 incorporates axon-myelin adhesion proteins that are collectively required to form nodes of Ranvier. Together, our results demonstrate that VAMP2/3-mediated membrane expansion in oligodendrocytes is indispensable for myelin formation, uncovering a cellular pathway that could sculpt myelination patterns in response to activity-dependent signals or be therapeutically targeted to promote regeneration in disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.