Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.
Terms of use:
Documents in
ABSTRACTIn this paper we employ a cost indirect output distance function to model school district technology and measure performance. This function has the advantage of readily modeling multiple output production where that production is subject to a budget constraint. It also provides a natural measure of performance which is closely related to Fanell type measures of efficiency. We use this distance function to analyze the performance of a sample of Texas school districts, and to simulate various equalization schemes by varying the budget constraint faced by individual school districts. We find that the school districts in our sample could make considerable gains in value added by allocating their resources more efficiently. The simulated equalization schemes can also provide gains in value-added, but they typically require additional funds. Our technique could be employed more generally to analysis of public sector performance. In the education context, it could also be employed to develop state aid formulas which are linked to performance and account for variations in cost of personnel and special needs of the student body.
Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte. The authors thank the National Science Foundation (NSF) for granting a site license to use the data and Kelly Kang of the NSF for providing technical documentation. They also thank Robert Pollak, Barton Hamilton, Kenneth Troske, Peter Mueser, John Pencavel, Paula Stephan, and Finis Welch. Seminar participants at the Southern Economic Association Meetings, the University of Missouri-Columbia, the American Economic Association Annual Meetings, the NBER Higher Education Conference, and the EALE/SOLE World Conference provided valuable comments on the paper. Sherry Okun assisted with constructing the tables in this paper. The views expressed here are the authors' and not necessarily those of the Federal Reserve Bank of Atlanta or the Federal Reserve System. Any remaining errors are the authors' responsibility. Abstract: This study uses data from the Survey of Doctorate Recipients to evaluate gender differences in salaries and promotion for academics in the humanities. Differences in employment outcomes by gender are evaluated using three methods: the Oaxaca decomposition is used to examine salary differentials, and binary choice models and duration analysis are used to estimate the probability of promotion to tenure. Over time, gender salary differences can largely be explained by academic rank. Substantial gender differences in promotion to tenure exist after controlling for productivity and demographic characteristics. However, the authors observe a slight decline in the gender promotion gap for the most recent cohort evaluated. On the basis of this evidence, the authors conclude that gender discrimination for academics in the humanities tends to operate through differences in promotion, which in turn affects wages.
Terms of use:
Documents inJEL classification: J4, J71
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.