Summary
Background
The inconsistent effect of hypothermia treatment on severe brain injury in previous trials might be because hypothermia was induced too late after injury. We aimed to assess whether very early induction of hypothermia improves outcome in patients with severe brain injury.
Methods
The National Acute Brain Injury Study: Hypothermia II (NABIS: H II) was a randomised, multicentre clinical trial of patients with severe brain injury who were enrolled within 2·5 h of injury at six sites in the USA and Canada. Patients with non-penetrating brain injury who were 16–45 years old and were not responsive to instructions were randomly assigned (1:1) by a random number generator to hypothermia or normothermia. Patients randomly assigned to hypothermia were cooled to 35°C until their trauma assessment was completed. Patients who had none of a second set of exclusion criteria were either cooled to 33°C for 48 h and then gradually rewarmed or treated at normothermia, depending upon their initial treatment assignment. Investigators who assessed the outcome measures were masked to treatment allocation. The primary outcome was the Glasgow outcome scale score at 6 months. Analysis was by modified intention to treat. This trial is registered with ClinicalTrials.gov, NCT00178711.
Findings
Enrolment occurred from December, 2005, to June, 2009, when the trial was terminated for futility. Follow-up was from June, 2006, to December, 2009. 232 patients were initially randomised a mean of 1·6 h (SD 0·5) after injury: 119 to hypothermia and 113 to normothermia. 97 patients (52 in the hypothermia group and 45 in the normothermia group) did not meet any of the second set of exclusion criteria. The mean time to 35°C for the 52 patients in the hypothermia group was 2·6 h (SD 1·2) and to 33°C was 4·4 h (1·5). Outcome was poor (severe disability, vegetative state, or death) in 31 of 52 patients in the hypothermia group and 25 of 56 in the normothermia group (relative risk [RR] 1·08, 95% CI 0·76–1·53; p=0·67). 12 patients in the hypothermia group died compared with eight in the normothermia group (RR 1·30, 95% CI 0·58–2·52; p=0·52).
Interpretation
This trial did not confirm the utility of hypothermia as a primary neuroprotective strategy in patients with severe traumatic brain injury.
Funding
National Institute of Neurological Disorders and Stroke.
ObjectCurrent standard of care for patients with severe traumatic brain injury (TBI) is prophylactic treatment with phenytoin for 7 days to decrease the risk of early posttraumatic seizures. Phenytoin alters drug metabolism, induces fever, and requires therapeutic-level monitoring. Alternatively, levetiracetam (Keppra) does not require serum monitoring or have significant pharmacokinetic interactions. In the current study, the authors compare the EEG findings in patients receiving phenytoin with those receiving levetiracetam monotherapy for seizure prophylaxis following severe TBI.MethodsData were prospectively collected in 32 cases in which patients received levetiracetam for the first 7 days after severe TBI and compared with data from a historical cohort of 41 cases in which patients received phenytoin monotherapy. Patients underwent 1-hour electroencephalographic (EEG) monitoring if they displayed persistent coma, decreased mental status, or clinical signs of seizures. The EEG results were grouped into normal and abnormal findings, with abnormal EEG findings further categorized as seizure activity or seizure tendency.ResultsFifteen of 32 patients in the levetiracetam group warranted EEG monitoring. In 7 of these 15 cases the results were normal and in 8 abnormal; 1 patient had seizure activity, whereas 7 had seizure tendency. Twelve of 41 patients in the phenytoin group received EEG monitoring, with all results being normal. Patients treated with levetiracetam and phenytoin had equivalent incidence of seizure activity (p = 0.556). Patients receiving levetiracetam had a higher incidence of abnormal EEG findings (p = 0.003).ConclusionsLevetiracetam is as effective as phenytoin in preventing early posttraumatic seizures but is associated with an increased seizure tendency on EEG analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.