Golden eagles Aquila chrysaetos are a long‐lived and wide‐ranging species believed to be stable or in slight decline across North America. Golden eagles have an extended subadult stage (4–5 years) that is critical to maintaining recruitment into the breeding population and population viability. Compared to adult golden eagles, the ecology of subadult golden eagles (hereafter, subadults) has received little attention. We investigated patterns of resource selection for subadults in the Great Basin Desert of the western United States during summer and winter, 2013–2019. We monitored 46 subadults with GPS transmitters and related locations (n = 99 037) with predictors hypothesized to influence seasonal patterns of space use with mixed‐effects logistic regression. Subadults selected for ridges and upper slopes in summer and winter, but higher elevations in summer. Subadults showed weak selection for lower ridge density in summer, which was likely facilitated by selection for areas with greater thermal wind current potential. In contrast, subadults showed strong selection for higher ridge density in winter. Subadults selected areas further from roads in summer and closer to roads and electrical transmission lines in winter, which may be related to winter scavenging of road‐killed ungulates. Resource selection functions suggested subadults selected for shrublands and woodlands in both seasons, but odds ratios revealed that during winter subadults avoided shrublands and increased selection of woodlands relative to summer. Subadults selected for areas with infrequent fires in both seasons; areas with frequent fires were avoided in summer but selected for in winter. Seasonal changes in resource selection suggested that subadults used woodlands more than expected, potentially reflecting spatial partitioning by subadults to lower‐quality habitats to minimize competition with breeding adults during winter when energetic demands for thermoregulation were presumably higher and prey more limited.
The northern Gulf of Mexico (nGoM) is a globally important region for oil extraction and supports a diverse assemblage of marine birds. Due to their frequent contact with surface waters, diverse foraging strategies, and the ease with which oil adheres to feathers, seabirds are particularly susceptible to hydrocarbon contamination. Given the chronic and acute exposure of seabirds to oiling and a lack of studies that focus on the exposure of seabirds to oiling in sub-tropical and tropical regions, a greater understanding of the vulnerability of seabirds to oil in the nGoM appears warranted. We present an oil vulnerability index for seabirds in the nGoM tailored to the current state of knowledge using new, spatiotemporally expensive vessel-based seabird observations. We use information on the exposure and sensitivity of seabirds to oil to rank seabird vulnerability. Exposure variables characterized the potential to encounter oil and gas (O&G). Sensitivity variables characterized the potential impact of seabirds interacting with O&G and are related to life history and productivity. We also incorporated uncertainty in each variable, identifying data gaps. We found that the percent of seabirds’ habitat defined as highly suitable within 10 km of an O&G platform ranged from 0%-65% among 24 species. Though O&G platforms only overlap with 15% of highly suitable seabird habitat, overlap occurs in areas of moderate to high vulnerability of seabirds, particularly along the shelf-slope. Productivity-associated sensitivity variables were primarily responsible for creating the gradient in vulnerability scores and had greater uncertainty than exposure variables. Highly vulnerable species (e.g., Northern gannet (Morus bassanus)) tended to have high exposure to the water surface via foraging behaviors (e.g., plunge-diving), older age at first breeding, and an extended incubating and fledging period compared to less vulnerable species (e.g., Pomarine jaeger (Stercorarius pomarinus)). Uncertainty related to productivity could be reduced through at-colony monitoring. Strategic seabird satellite tagging could help target monitoring efforts to colonies known to use the nGoM, and continued vessel-based observations could improve habitat characterization. As offshore energy development in the nGoM continues, managers and researchers could use these vulnerability ranks to identify information gaps to prioritize research and focal species.
The Gulf of Mexico supports many seabird species, yet data gaps describing species composition and habitat use are prevalent. We used vessel-based observations from the Gulf of Mexico Marine Assessment Program for Protected Species to identify and characterize distinct seabird assemblages in the northern Gulf of Mexico (within the U.S. Exclusive Economic Zone; nGoM). Using cluster analysis of 17 seabird species, we identified assemblages based on seabird relative density. Vessel-based surveys documented the location, species, and number of seabirds across the nGoM between 2017–2019. For each assemblage, we identified the (co-)dominant species, spatial distribution, and areas of greater relative density. We also assessed the relationship of the total relative density within each assemblage with environmental, spatial, and temporal covariates. Of the species assessed, 76% (n = 13) breed predominantly outside the nGoM basin. We identified four seabird assemblages. Two assemblages, one dominated by black tern and the other co-dominated by northern gannet/laughing gull, occurred on the continental shelf. An assemblage dominated by sooty tern occurred along the continental slope into pelagic waters. The fourth assemblage had no dominant species, was broadly distributed, and was composed of observations with low relative density (‘singles’ assemblage). Differentiation of assemblages was linked to migratory patterns, residency, and breeding location. The spatial distributions and relationships of the black tern and northern gannet/laughing gull assemblages with environmental covariates indicate associations with river outflows and ports. The sooty tern assemblage overlapped an area prone to mesoscale feature formation. The singles assemblage may reflect commuting and dispersive behaviors. These findings highlight the importance of seasonal migrations and dynamic features across the seascape, shaping seabird assemblages. Considering the potential far-ranging effects of interactions with seabirds in the nGoM, awareness of these unique patterns and potential links with other fauna could inform future monitoring, research, restoration, offshore energy, and aquaculture development in this highly industrialized sea.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.