SummaryRepair of DNA double strand breaks by homologous recombination (HR) is initiated by Rad51 filament nucleation on single-stranded DNA (ssDNA), which catalyzes strand exchange with homologous duplex DNA. BRCA2 and the Rad51 paralogs are tumor suppressors and critical mediators of Rad51. To gain insight into Rad51 paralog function, we investigated a heterodimeric Rad51 paralog complex, RFS-1/RIP-1, and uncovered the molecular basis by which Rad51 paralogs promote HR. Unlike BRCA2, which nucleates RAD-51-ssDNA filaments, RFS-1/RIP-1 binds and remodels pre-synaptic filaments to a stabilized, “open,” and flexible conformation, in which the ssDNA is more accessible to nuclease digestion and RAD-51 dissociation rate is reduced. Walker box mutations in RFS-1, which abolish filament remodeling, fail to stimulate RAD-51 strand exchange activity, demonstrating that remodeling is essential for RFS-1/RIP-1 function. We propose that Rad51 paralogs stimulate HR by remodeling the Rad51 filament, priming it for strand exchange with the template duplex.
Single molecule force spectroscopy is a powerful method that uses the mechanical properties of DNA to explore DNA interactions. Here we describe how DNA stretching experiments quantitatively characterize the DNA binding of small molecules and proteins. Small molecules exhibit diverse DNA binding modes, including binding into the major and minor grooves and intercalation between base pairs of double-stranded DNA (dsDNA). Histones bind and package dsDNA, while other nuclear proteins such as high mobility group proteins bind to the backbone and bend dsDNA. Single-stranded DNA (ssDNA) binding proteins slide along dsDNA to locate and stabilize ssDNA during replication. Other proteins exhibit binding to both dsDNA and ssDNA. Nucleic acid chaperone proteins can switch rapidly between dsDNA and ssDNA binding modes, while DNA polymerases bind both forms of DNA with high affinity at distinct binding sites at the replication fork. Single molecule force measurements quantitatively characterize these DNA binding mechanisms, elucidating small molecule interactions and protein function.
The human APOBEC3 proteins are a family of DNA-editing enzymes that play an important role in the innate immune response and have broad activity against retroviruses and retrotransposons. APOBEC3G is a member of this family that inhibits HIV-1 replication in the absence of the viral infectivity factor Vif. Inhibition of HIV replication occurs by both deamination of viral single-stranded DNA and a deamination-independent mechanism. Efficient deamination requires rapid binding to and dissociation from ssDNA. However, a relatively slow dissociation rate is required for the proposed deaminase-independent roadblock mechanism in which APOBEC3G binds the viral template strand and blocks reverse transcriptase-catalyzed DNA elongation. Here we show that APOBEC3G initially binds ssDNA with rapid on-off rates and subsequently converts to a slowly dissociating mode. In contrast, an oligomerization-deficient APOBEC3G mutant did not exhibit a slow off rate. We propose that catalytically active monomers or dimers slowly oligomerize on the viral genome and inhibit reverse transcription.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.