A number of approaches have been utilized in the prevention, management, and treatment of obesity, including, surgery, medication, diet, exercise, and overall lifestyle changes. Despite these interventions, the prevalence of obesity and the various disorders related to it is growing. In obesity, there is a constant state of chronic low-grade inflammation which is characterized by activation and infiltration of pro-inflammatory immune cells and a dysregulated production of high levels of pro-inflammatory cytokines. This pro-inflammatory milieu contributes to insulin resistance, type-2 diabetes, cardiovascular disease, and other related co-morbidities. The roles of the innate (macrophages, neutrophils, eosinophils, mast cells, NK cells, MAIT cells) and the adaptive (CD4 T cells, CD8 T cells, regulatory T cells, and B cells) immune responses and the roles of adipokines and cytokines in adipose tissue inflammation and obesity are discussed. An understanding of the crosstalk between the immune system and adipocytes may shed light in better treatment modalities for obesity and obesity-related diseases.
SUMMARYThe aim of this study was to investigate the cardiovascular effects of exogenous cortisol in fetal sheep, (a) between 100 and 120 days of gestation when cortisol production is minimal and (b) after 130 days when endogenous plasma cortisol starts to rise. Chronically cannulated ovine fetuses (103-120 days, n = 9; 130-137 days, n = 7), received sequentially a 24 h infusion of vehicle (0 9 % sodium chloride) and a 24 h infusion of cortisol at 100 ,ug/h. Blood pressure and heart rate changes to bolus injections each of angiotensin II and noradrenaline (0-2, 05, 1 0, 2-0 ,ug) were measured before and after the saline and cortisol infusions. Fetuses in each age group, served as additional controls receiving 48 h saline infusions. In both immature and mature age groups, the cortisol infusion increased basal fetal blood cortisol concentrations by 33 7 and 354 nmol/l respectively. In the immature group, cortisol, but not saline, caused significant 14 3 and 15-3 % increases in basal systolic and diastolic pressures respectively. Basal blood pressure was higher in the mature group, but did not increase further despite the increase in cortisol levels. Furthermore, vascular responsiveness to angiotensin II but not to noradrenaline was significantly enhanced following the cortisol infusion, at both ages. Fetal heart rate did not change following the cortisol infusion. Exogenous cortisol contributes to the regulation of fetal blood pressure in the immature fetus, when other mechanisms have not developed. Cortisol might achieve this, in part, by enhancing vascular sensitivity to angiotensin II.
Methamphetamine (METH) is a powerful central nervous system stimulant which elevates mood, alertness, energy levels and concentration in the short-term. However, chronic use and/or at higher doses METH use often results in psychosis, depression, delusions and violent behavior. METH was formerly used to treat conditions such as obesity and attention deficit hyperactivity disorder, but now is primarily used recreationally. Its addictive nature has led to METH abuse becoming a global problem. At a cellular level, METH exerts a myriad of effects on the central and peripheral nervous systems, immune system and the gastrointestinal system. Here we present how these effects might be linked and their potential contribution to the pathogenesis of neuropsychiatric disorders. In the long term, this pathway could be targeted therapeutically to protect people from the ill effects of METH use. This model of METH use may also provide insight into how gut, nervous and immune systems might break down in other conditions that may also benefit from therapeutic intervention.
Treatment of nine pregnant Merino ewes (64.0 +/- 0.4 days of gestation) with dexamethasone (D; 0.76 mg/h for 48 h) resulted in significant alterations in fetal fluids compared with eight saline-infused control animals (S; 63.0 +/- 0.9 days). There was a substantial increase in allantoic fluid volume (177 +/- 18 ml, D vs. 31 +/- 6, S) but no change in amniotic fluid volume (248 +/- 12 ml, D; 305 +/- 24, S). For allantoic fluid there was a significant decrease in osmolality (213 +/- 4 mosmol/kg water, D; 230 +/- 5, S) and alterations in composition. Amniotic fluid osmolality was unchanged (292 +/- 2 mosmol/kg water, D; 293 +/- 1, S), but amniotic fluid composition was affected. In four fetuses in which bladder and amniotic cannulas were inserted at gestational age 68-75 days, fetal urine flow rate increased from a mean of 4.1 +/- 1.1 to 13.8 +/- 2.6 ml/h after 24 h and 11.8 +/- 3.0 ml/h at 48 h for a similar maternal D infusion, whereas no such increase occurred in four control fetuses. All the fetal urine voided during a 3.5- to 4-h infusion of 51Cr-labeled EDTA into the fetal bladder was directed to the allantois. The results suggest that the increase in allantoic fluid volume resulted from increased fetal urine output into the allantoic compartment, although the composition of the excess allantoic fluid differed substantially from that of fetal urine. There was a greater incidence of abnormal cotyledons in the D-infused ewes.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.