To truly transform the landscape of tuberculosis treatment, novel regimens containing at least 2 new drugs are needed to simplify the treatment of both drug-susceptible and drug-resistant forms of tuberculosis. As part of an ongoing effort to evaluate novel drug combinations for treatment-shortening potential in a murine model, we performed two long-term, relapse-based experiments. In the first experiment, TMC207 plus pyrazinamide, alone or in combination with any third drug, proved superior to the first-line regimen including rifampin, pyrazinamide, and isoniazid. On the basis of CFU counts at 1 month, clofazimine proved to be the best third drug combined with TMC207 and pyrazinamide, whereas the addition of PA-824 was modestly antagonistic. Relapse results were inconclusive due to the low rate of relapse in all test groups. In the second experiment evaluating 3-drug combinations composed of TMC207, pyrazinamide, PA-824, moxifloxacin, and rifapentine, TMC207 plus pyrazinamide plus either rifapentine or moxifloxacin was the most effective, curing 100% and 67% of the mice treated, respectively, in 2 months of treatment. Four months of the first-line regimen did not cure any mice, whereas the combination of TMC207, PA-824, and moxifloxacin cured 50% of the mice treated. The results reveal new building blocks for novel regimens with the potential to shorten the duration of treatment for both drug-susceptible and drug-resistant tuberculosis, including the combination of TMC207, pyrazinamide, PA-824, and a potent fluoroquinolone.New drugs with potent activity against Mycobacterium tuberculosis are needed to shorten the duration of treatment for tuberculosis (TB) and facilitate the global implementation of directly observed therapy (25). Several new drugs in clinical development have demonstrated the potential to shorten TB treatment in animal models (13,20,23,24,29,35) and even clinical trials (6,9,30). To truly transform the TB treatment landscape, novel regimens containing 2 or more new drugs are needed to simplify the treatment of drug-susceptible and multidrug-resistant (MDR) or extensively drug-resistant (XDR) TB alike. Therefore, a new paradigm is needed in which new regimens, rather than new drugs, become the focus of both preclinical and clinical development programs (31).The Global Alliance for TB Drug Development (TB Alliance) recently launched a phase II study of the extended (to 2 weeks) early bactericidal activity of the novel regimen of PA-824, pyrazinamide (PZA), and moxifloxacin (MXF), a combination, which contains neither rifampin (RIF) nor isoniazid (INH) yet was superior to the current first-line regimen of RIF-PZA-INH in mice (23). While the drugs in this regimen should be active against the majority of MDR-TB isolates, PZA and MXF are unlikely to be active against XDR TB. Moreover, both PZA resistance and fluoroquinolone resistance are on the rise in MDR TB patients (1, 9, 10, 21). Replacement of one or both of these agents with a new drug with a novel mechanism of action may lead to short-course...
BackgroundAvailability of an ultra-short-course drug regimen capable of curing patients with tuberculosis in 2 to 3 mo would significantly improve global control efforts. Because immediate prospects for novel treatment-shortening drugs remain uncertain, we examined whether better use of existing drugs could shorten the duration of treatment. Rifapentine is a long-lived rifamycin derivative currently recommended only in once-weekly continuation-phase regimens. Moxifloxacin is an 8-methoxyfluoroquinolone currently used in second-line regimens.Methods and FindingsUsing a well-established mouse model with a high bacterial burden and human-equivalent drug dosing, we compared the efficacy of rifapentine- and moxifloxacin-containing regimens with that of the standard daily short-course regimen based on rifampin, isoniazid, and pyrazinamide. Bactericidal activity was assessed by lung colony-forming unit counts, and sterilizing activity was assessed by the proportion of mice with culture-positive relapse after 2, 3, 4, and 6 mo of treatment. Here, we demonstrate that replacing rifampin with rifapentine and isoniazid with moxifloxacin dramatically increased the activity of the standard daily regimen. After just 2 mo of treatment, mice receiving rifapentine- and moxifloxacin-containing regimens were found to have negative lung cultures, while those given the standard regimen still harbored 3.17 log10 colony-forming units in the lungs (p < 0.01). No relapse was observed after just 3 mo of treatment with daily and thrice-weekly administered rifapentine- and moxifloxacin-containing regimens, whereas the standard daily regimen required 6 mo to prevent relapse in all mice.ConclusionsRifapentine should no longer be viewed solely as a rifamycin for once-weekly administration. Our results suggest that treatment regimens based on daily and thrice-weekly administration of rifapentine and moxifloxacin may permit shortening the current 6 mo duration of treatment to 3 mo or less. Such regimens warrant urgent clinical investigation.
In a recent experimental study using the mouse model of tuberculosis, treatment with a combination of rifampin, moxifloxacin, and pyrazinamide was able to shorten the time to negative lung cultures by up to 2 months compared with the standard regimen of rifampin, isoniazid, and pyrazinamide. To confirm that this substitution of moxifloxacin for isoniazid permits a shorter duration of treatment, a second study was performed in which mice were assessed for relapse after treatment with combination therapy for 3, 4, 5, or 6 months. Although no relapse was observed among mice treated for at least 4 months with rifampin, moxifloxacin, and pyrazinamide, mice treated with rifampin, isoniazid, and pyrazinamide required 6 months of treatment before no relapse could be detected. For mice treated with rifampin, moxifloxacin, and pyrazinamide, similar efficacy was noted whether pyrazinamide was administered for 1 month, 2 months, or the entire duration of therapy. These results suggest that the use of rifampin, moxifloxacin, and pyrazinamide may substantially shorten the duration of therapy needed to cure human tuberculosis and that the full benefit of pyrazinamide in this regimen may be realized after just 1 month of treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.