We compared the inflammatory and cytotoxic responses caused by household mold and bacteria in human and mouse cell lines. We studied the fungi Aspergillus versicolor, Penicillium spinulosum, and Stachybotrys chartarum and the bacteria Bacillus cereus, Pseudomonas fluorescens, and Streptomyces californicus for their cytotoxicity and ability to stimulate the production of inflammatory mediators in mouse RAW264.7 and human 28SC macrophage cell lines and in the human A549 lung epithelial cell line in 24-hr exposure to 10(5), 10(6), and 10(7) microbes/mL. We studied time dependency by terminating the exposure to 10(6) microbes/mL after 3, 6, 12, 24, and 48 hr. We analyzed production of the cytokines tumor necrosis factor-alpha and interleukins 6 and 1ss (TNF-alpha, IL-6, IL-1ss, respectively) and measured nitric oxide production using the Griess method, expression of inducible NO-synthase with Western Blot analysis, and cytotoxicity with the MTT-test. All bacteria strongly induced the production of TNF-alpha, IL-6 and, to a lesser extent, the formation of IL-1ss in mouse macrophages. Only the spores of Str. californicus induced the production of NO and IL-6 in both human and mouse cells. In contrast, exposure to fungal strains did not markedly increase the production of NO or any cytokine in the studied cell lines except for Sta. chartarum, which increased IL-6 production somewhat in human lung epithelial cells. These microbes were less cytotoxic to human cells than to mouse cells. On the basis of equivalent numbers of bacteria and spores of fungi added to cell cultures, the overall potency to stimulate the production of proinflammatory mediators decreased in the order Ps. fluorescens > Str. californicus > B. cereus > Sta. chartarum > A. versicolor > P. spinulosum. These data suggest that bacteria in water-damaged buildings should also be considered as causative agents of adverse inflammatory effects.
Moisture damage in schools may have adverse respiratory health effects in pupils. Finnish school children seem to be at higher risk, possibly due to quantitative and/or qualitative differences in exposure.
The microbial exposure associated with health complaints in moldy houses consists of a heterogeneous group of components, including both living and dead bacteria, fungi, and their metabolites and active compounds. However, little is known about the interactions between different microbes and their metabolites, although the cytotoxicity and inflammatory potential of certain individual microbes have been reported. In this study, we investigated the inflammatory responses of mouse RAW264.7 macrophages after exposure to six indoor air microbes (Aspergillus versicolor, Penicillium spinulosum, Stachybotrys chartarum, Bacillus cereus, Mycobacterium terrae, and Pseudomonas fluorescens) alone and together with the actinomycete Streptomyces californicus. The production of nitric oxide, levels of the proinflammatory cytokines tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6), and cytotoxicity were measured. The coexposure to Sta. chartarum and Str. californicus caused a synergistic increase in the production of IL-6 but not other cytokines. In further experiments, the metabolites from Sta. chartarum or from closely related fungi (atranones B and E, satratoxin G, trichodermin, 7-α-hydroxytrichodermol, staplabin, and SMTP-7) and the known fungal toxins sterigmatocystin, citrinin, and ochratoxin A were each tested with Str. californicus. The testing revealed a synergistic response in TNF-α and IL-6 production after coexposure to Str. californicus with both trichodermin and 7-α-hydroxytrichodermol. Finally, the synergistic inflammatory response caused by Str. californicus and trichodermin together was studied by analyzing for the presence of nuclear factor-κB (NF-κB) in nuclear extracts of the exposed cells. The exposure to Str. californicus induced the binding of NF-κB proteins to the NF-κB consensus sequence as well as to the natural NF-κB site of the IL-6 promoter. Adding trichodermin to the exposure did not increase the DNA binding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.