BackgroundLarge amounts of electro-oculographic (EOG) data, recorded during electroencephalographic (EEG) measurements, go underutilized. We present an automatic, auto-calibrating algorithm that allows efficient analysis of such data sets.MethodsThe auto-calibration is based on automatic threshold value estimation. Amplitude threshold values for saccades and blinks are determined based on features in the recorded signal. The performance of the developed algorithm was tested by analyzing 4854 saccades and 213 blinks recorded in two different conditions: a task where the eye movements were controlled (saccade task) and a task with free viewing (multitask). The results were compared with results from a video-oculography (VOG) device and manually scored blinks.ResultsThe algorithm achieved 93% detection sensitivity for blinks with 4% false positive rate. The detection sensitivity for horizontal saccades was between 98% and 100%, and for oblique saccades between 95% and 100%. The classification sensitivity for horizontal and large oblique saccades (10 deg) was larger than 89%, and for vertical saccades larger than 82%. The duration and peak velocities of the detected horizontal saccades were similar to those in the literature. In the multitask measurement the detection sensitivity for saccades was 97% with a 6% false positive rate.ConclusionThe developed algorithm enables reliable analysis of EOG data recorded both during EEG and as a separate metrics.
Human cognitive capabilities are under constant pressure in the modern information society. Cognitive load detection would be beneficial in several applications of human–computer interaction, including attention management and user interface adaptation. However, current research into accurate and real-time biosignal-based cognitive load detection lacks understanding of the optimal and minimal window length in data segmentation which would allow for more timely, continuous state detection. This study presents a comparative analysis of ultra-short (30 s or less) window lengths in cognitive load detection with a wearable device. Heart rate, heart rate variability, galvanic skin response, and skin temperature features are extracted at six different window lengths and used to train an Extreme Gradient Boosting classifier to detect between cognitive load and rest. A 25 s window showed the highest accury (67.6%), which is similar to earlier studies using the same dataset. Overall, model accuracy tended to decrease as the window length decreased, and lowest performance (60.0%) was observed with a 5 s window. The contribution of different physiological features to the classification performance and the most useful features that react in short windows are also discussed. The analysis provides a promising basis for future real-time applications with wearable sensors.
Eye movements and other rich data obtained in virtual reality (VR) environments resembling situations where symptoms are manifested could help in the objective detection of various symptoms in clinical conditions. In the present study, 37 children with attention deficit hyperactivity disorder and 36 typically developing controls (9–13 y.o) played a lifelike prospective memory game using head-mounted display with inbuilt 90 Hz eye tracker. Eye movement patterns had prominent group differences, but they were dispersed across the full performance time rather than associated with specific events or stimulus features. A support vector machine classifier trained on eye movement data showed excellent discrimination ability with 0.92 area under curve, which was significantly higher than for task performance measures or for eye movements obtained in a visual search task. We demonstrated that a naturalistic VR task combined with eye tracking allows accurate prediction of attention deficits, paving the way for precision diagnostics.
We present a computationally light real-time algorithm which automatically detects blinks, saccades, and fixations from electro-oculography (EOG) data and calculates their temporal parameters. The method is probabilistic which allows to consider the uncertainties in the detected events. The method is real-time in the sense that it processes the data sample-by-sample, without a need to process the whole data as a batch. Prior to the actual measurements, a short, unsupervised training period is required. The parameters of the Gaussian likelihoods are learnt using an expectation maximization algorithm. The results show the promise of the method in detecting blinks, saccades, and fixations, with detection rates close to 100 %. The presented method is published as an open source tool.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.