Fax: 61-2-95147553 2 Red-shifting of the optical absorption spectra of aggregates of gold nanoparticles by dipole-dipole interactions is of considerable interest, both for theoretical reasons and because the phenomenon can be potentially exploited in various applications. A convenient and practical way to control the effect is to assemble the aggregated ensemble of n gold nanoparticles on the outer surface of larger dielectric spheres. Here we show by experiment and calculation how the spectra of these structures can be systematically morphed from that of isolated gold particles, through the regime of broad absorption dominated by particle-particle interactions and finally to the limiting case of a continuous nano-shell. The experimental data was produced using the process of deposition-precipitation, which provides a facile method to decorate polystyrene micro-spheres with gold nanoparticles.There is no need for prior functionalisation of the micro-sphere surface in our method of depositionprecipitation. Calculations were carried out using a code based on the discrete dipole approximation (DDA). The spectra were dominated by three effects. These were a peak absorption at about 540 nm produced by the conventional plasmon resonance of spherical gold nanoparticles, a broad absorption in the range 600 to 900 nm caused by diverse dipole-dipole interactions between particles which strengthened as the number of attached gold particles increased and finally, when n was large, an absorption peak due to the onset of nanoshell-like resonances. The experimental spectra could be successfully fitted by spectra calculated using combinations of these effects.3
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.