Emerging pollutants such as pharmaceuticals have been focusing international attention for a few decades. Ciprofloxacin (CIP) is a common drug that is widely found in hospital and wastewater treatment plants effluents, as well as in rivers. In this work, the feasibility of CIP degradation by ultrasound process at high frequency is discussed and sonolysis, sonolysis with hydrogen peroxide and sono-Fenton are evaluated. The amounts of hydrogen peroxide and ferrous ions (Fe 2+) needed were optimized using response surface methodology. Best results were obtained with the sono-Fenton process resulting in a total pharmaceutical degradation within 15 minutes and a mineralization greater than 60% after one hour. Optimal conditions were tested on a real matrix from a municipal wastewater treatment plant. Even if the degradation of the pollutants by sono-Fenton was hampered, the removal efficiency of both CIP and total organic carbon (TOC) is interesting as an increase in the biodegradability of the wastewater is found. These results show that sono-Fenton oxidation can be a promising pre-treatment process for pharmaceutical-containing wastewaters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.