Mutational analyses performed following acquired ibrutinib resistance have suggested that chronic lymphocytic leukemia (CLL) progression on ibrutinib is linked to mutations in Bruton tyrosine kinase (BTK) and/or phospholipase Cγ2 (PLCG2) genes. Mutational information for patients still on ibrutinib is limited. We report a study aimed to provide a “snapshot” of the prevalence of mutations in a real-life CLL cohort still on ibrutinib after at least 3 years of treatment. Of 204 patients who initiated ibrutinib via an early-access program at 29 French Innovative Leukemia Organization (FILO) centers, 63 (31%) were still on ibrutinib after 3 years and 57 provided a fresh blood sample. Thirty patients had a CLL clone ≥0.5 × 109/L, enabling next-generation sequencing (NGS); BTK and PLCG2 mutations were detected in 57% and 13% of the NGS samples, respectively. After median follow-up of 8.5 months from sample collection, the presence of a BTK mutation was significantly associated with subsequent CLL progression (P = .0005 vs no BTK mutation). Our findings support that mutational analysis should be considered in patients receiving ibrutinib who have residual clonal lymphocytosis, and that clinical trials are needed to evaluate whether patients with a BTK mutation may benefit from an early switch to another treatment.
Circulating Tumor Cells (CTC) and Circulating Tumor Microemboli (CTM) are Circulating Rare Cells (CRC) which herald tumor invasion and are expected to provide an opportunity to improve the management of cancer patients. An unsolved technical issue in the CTC field is how to obtain highly sensitive and unbiased collection of these fragile and heterogeneous cells, in both live and fixed form, for their molecular study when they are extremely rare, particularly at the beginning of the invasion process. We report on a new protocol to enrich from blood live CTC using ISET® (Isolation by SizE of Tumor/Trophoblastic Cells), an open system originally developed for marker-independent isolation of fixed tumor cells. We have assessed the impact of our new enrichment method on live tumor cells antigen expression, cytoskeleton structure, cell viability and ability to expand in culture. We have also explored the ISET® in vitro performance to collect intact fixed and live cancer cells by using spiking analyses with extremely low number of fluorescent cultured cells. We describe results consistently showing the feasibility of isolating fixed and live tumor cells with a Lower Limit of Detection (LLOD) of one cancer cell per 10 mL of blood and a sensitivity at LLOD ranging from 83 to 100%. This very high sensitivity threshold can be maintained when plasma is collected before tumor cells isolation. Finally, we have performed a comparative next generation sequencing (NGS) analysis of tumor cells before and after isolation from blood and culture. We established the feasibility of NGS analysis of single live and fixed tumor cells enriched from blood by our system. This study provides new protocols for detection and characterization of CTC collected from blood at the very early steps of tumor invasion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.