The heterogeneity of exosomal populations has hindered our understanding
of their biogenesis, molecular composition, biodistribution, and functions. By
employing asymmetric-flow field-flow fractionation (AF4), we identified two
exosome subpopulations (large exosome vesicles, Exo-L, 90-120 nm; small exosome
vesicles, Exo-S, 60-80 nm) and discovered an abundant population of
non-membranous nanoparticles termed “exomeres” (~35 nm).
Exomere proteomic profiling revealed an enrichment in metabolic enzymes and
hypoxia, microtubule and coagulation proteins and specific pathways, such as
glycolysis and mTOR signaling. Exo-S and Exo-L contained proteins involved in
endosomal function and secretion pathways, and mitotic spindle and IL-2/STAT5
signaling pathways, respectively. Exo-S, Exo-L, and exomeres each had unique
N-glycosylation, protein, lipid, and DNA and RNA profiles
and biophysical properties. These three nanoparticle subsets demonstrated
diverse organ biodistribution patterns, suggesting distinct biological
functions. This study demonstrates that AF4 can serve as an improved analytical
tool for isolating and addressing the complexities of heterogeneous nanoparticle
subpopulations.
Disruption of the cyclin-dependent kinase-inhibitory domain of p27 enhances growth of mice. Growth is attributed to an increase in cell number, due to increased cell proliferation, most obviously in tissues that ordinarily express p27 at the highest levels. Disruption of p27 function leads to nodular hyperplasia in the intermediate lobe of the pituitary. However, increased growth occurs without an increase in the amounts of either growth hormone or IGF-I. In addition, female mice were infertile. Luteal cell differentiation is impaired, and a disordered estrus cycle is detected. These results reflect a disturbance of the hypothalamic-pituitary-ovarian axis. The phenotypes of these mice suggest that loss of p27 causes an alteration in cell proliferation that can lead to specific endocrine dysfunction.
Metastasis and chemoresistance in cancer are linked phenomena but the molecular basis for this link is unknown. We uncovered a network of paracrine signals between carcinoma, myeloid and endothelial cells that drives both processes in breast cancer. Cancer cells that overexpress CXCL1 and 2 by transcriptional hyperactivation or 4q21 amplification are primed for survival in metastatic sites. CXCL1/2 attract CD11b+Gr1+ myeloid cells into the tumor, which produce chemokines including S100A8/9 that enhance cancer cell survival. While chemotherapeutic agents kill cancer cells, these treatments trigger a parallel stromal reaction leading to TNF-α production by endothelial and other stromal cells. TNF-α heightens the expression of CXCL1/2 in cancer cells, thus amplifying the CXCL1/2-S100A8/9 loop and causing chemoresistance. CXCR2 blockers break this cycle, augmenting the efficacy of chemotherapy against breast tumors and particularly against metastasis. This network of endothelial-carcinoma-myeloid signaling interactions provides a mechanism linking chemoresistance and metastasis, with opportunities for intervention.
We report that breast cancer cells that infiltrate the lungs support their own metastasis-initiating ability by expressing tenascin C (TNC). We find that the expression of TNC, an extracellular matrix protein of stem cell niches, is associated with the aggressiveness of pulmonary metastasis. Cancer cell–derived TNC promotes the survival and outgrowth of pulmonary micrometastases. TNC enhances the expression of stem cell signaling components, musashi homolog 1 (MSI1) and leucine-rich repeat–containing G protein– coupled receptor 5 (LGR5). MSI1 is a positive regulator of NOTCH signaling, whereas LGR5 is a target gene of the WNT pathway. TNC modulation of stem cell signaling occurs without affecting the expression of transcriptional enforcers of the stem cell phenotype and pluripotency, namely nanog homeobox (NANOG), POU class 5 homeobox 1 (POU5F1), also known as OCT4, and SRY-box 2 (SOX2). TNC protects MSI1-dependent NOTCH signaling from inhibition by signal transducer and activator of transcription 5 (STAT5), and selectively enhances the expression of LGR5 as a WNT target gene. Cancer cell– derived TNC remains essential for metastasis outgrowth until the tumor stroma takes over as a source of TNC. These findings link TNC to pathways that support the fitness of metastasis-initiating breast cancer cells and highlight the relevance of TNC as an extracellular matrix component of the metastatic niche.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.