A non-destructive cultivation system was developed to study the dynamics of phosphorus (Pi) uptake by mycorrhizal and non-mycorrhizal maize plantlets. The system consisted of a plant container connected via silicon tubes to a glass bottle containing a nutrient solution supplemented with Pi. The nutrient solution is pumped with a peristaltic pump to the upper part of the container via the silicon tubes and the solution percolate through the plantlet container back into the glass bottle. Pi is sampled from the glass bottle at regular intervals and concentration evaluated. Maize plantlets were colonized by the AMF Rhizophagus irregularis MUCL 41833 and Pi uptake quantified at fixed intervals (9, 21, and 42 h) from the depletion of the Pi in the nutrient solution flowing through the plantlets containers. Plants and fungus grew well in the perlite substrate. The concentration of Pi in the bottles followed an almost linear decrease over time, demonstrating a depletion of Pi in the circulating solution and a concomitant uptake/immobilization by the plantlet-AMF associates in the containers. The Pi uptake rate was significantly increased in the AMF-colonized plantlets (at 9 and 21 h) as compared to non-colonized plantlets, although no correlation was noticed with plant growth or P accumulation in shoots. The circulatory semi-hydroponic cultivation system developed was adequate for measuring Pi depletion in a nutrient solution and by corollary Pi uptake/immobilization by the plant-AMF associates. The measurements were non-destructive so that the time course of Pi uptake could be monitored without disturbing the growth of the plant and its fungal associate. The system further opens the door to study the dynamics of other micro and macro-nutrients as well as their uptake under stressed growth conditions such as salinity, pollution by hydrocarbon contaminants or potential toxic elements.
The accumulation of phosphorus (P) in plants increases their biomass and resistance/tolerance to organic pollutants. Both characteristics are mandatory for the utilization of plants in phytoremediation. Arbuscular mycorrhizal (AM) fungi improve plant P nutrition, and thus growth. However, only a few studies have focused on the dynamics of inorganic P (Pi) uptake in AM fungal-colonized plants in the presence of organic pollutants. Indeed, most of the results so far were obtained after harvesting the plants, thus by evaluating P concentration and content at a single time point. Here, we investigated the effects of the AM fungus Rhizophagus irregularis MUCL 41833 on the short-term Pi uptake dynamics of Medicago truncatula plants grown in the presence of benzo[a]pyrene (B[a]P), a polyaromatic hydrocarbon (PAH) frequently found in polluted soils. The study was conducted using a non-destructive circulatory semi-hydroponic cultivation system to investigate the short-term Pi depletion from a nutrient solution and as a corollary, the Pi uptake by the AM fungal-colonized and non-colonized plants. The growth, P concentration, and content of plants were also evaluated at harvest. The presence of B[a]P neither impacted the development of the AM fungus in the roots nor the plant growth and Pi uptake, suggesting a marked tolerance of both organisms to B[a]P pollution. A generally higher Pi uptake coupled with a higher accumulation of P in shoots and roots was noticed in AM fungal-colonized plants as compared to the non-colonized controls, irrespective of the presence or absence of B[a]P. Therefore, fungal-colonized plants showed the best growth. Furthermore, the beneficial effect provided by the presence of the AM fungus in roots was similar in presence or absence of B[a]P, thus opening the door for potential utilization in phytomanagement of PAH-polluted soils.
Bacterial wilt caused by Ralstonia solanacearum is one of the world's most important soil-borne plant diseases. In Martinique, French West Indies, a highly virulent new pathogenic variant of this bacterium (phylotype IIB/4NPB) severely impacts tomato production. Here we report on the effect of R. solanacearum CFBP 6783, classified in phytotype IIB/4NPB, on tomato plantlets grown under strict in vitro culture conditions in the presence or absence of the arbuscular mycorrhizal fungus Rhizophagus irregularis MUCL 41833. A mycelium donor plant (i.e. Crotalaria spectabilis) was used for rapid, uniform mycorrhization of tomato plantlets that were subsequently infected by the bacterium. Bacterial wilt was significantly delayed and the incidence of the disease consequently reduced in the mycorrhizal tomato plantlets. Conversely, R. solanacearum did not affect root colonization by the AMF within the 16 days of the experiment. These results suggested that the mycorrhizal fungus was able to reduce bacterial wilt symptoms, probably by eliciting defence mechanisms in the plant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.