This study aimed to evaluate the effect of different loading conditions on the mechanical behavior and stress distribution of a leucite-reinforced glass-ceramic. Plate-shaped ceramic specimens were obtained from leucite-reinforced glass-ceramic (1.5 × 8.4 × 8.3 mm) and adhesively cemented to a dentin analog substrate. Monotonic and cyclic contact fatigue tests were performed to simulate sphere-to-flat contact, using a 6 mm diameter spherical piston; and flat-to-flat contact, using a 3 mm diameter flat piston. For the monotonic test (n=20), a gradual compressive load (0.5 mm/min) was applied to the specimen using a universal testing machine. Failure load data were analyzed with Weibull statistics. The cyclic contact fatigue test was performed using protocols (load and a number of cycles) defined by the boundary technique (n=30). Fatigue data were analyzed using an inverse power law relationship and Weibull-lifetime distribution. The stress distribution was investigated using Finite Element Analysis (FEA). The monotonic and the fatigue Weibull modulus were similar among the two contact conditions. In fatigue, the slow crack growth exponent was greater for sphere-to-flat contact, which indicates that the load level had a greater effect on the specimen’s probability of failure. In conclusion, FEA showed different stress distribution for the tested loading conditions. The stress distribution and probability of fatigue failure of specimens tested in sphere-to-flat contact showed greater dependency to load level.
Background:
The use of zirconia-based ceramics to produce monolithic restorations increased due to improvements in the materials optical properties. Traditionally, zirconia-based ceramics were veneered with porcelain or glass-ceramic and were not directly exposed to the oral environment. Therefore, there are several doubts regarding the wear of the monolithic zirconia restoration and their antagonists. Additionally, different surface treatments are recommended to promote a smooth surface, including glaze and several polishing protocols. To support the correct clinical application, it is important to understand the advantages and limitations of each surface treatment.
Objective:
The aim of this short literature review is to investigate the factors that may affect the wear of monolithic zirconia restorations in service and their antagonists.
Method:
Pubmed/Medline database was accessed to review the literature from a 10-year period using the keywords: zirconia, monolithic, prosthesis, wear. Both clinical and in vitro studies were included in the review.
Results:
Studies investigated the effect of several surface treatments, including grinding with diamond-burs, polishing and glazing, on the surface roughness, phase transformation and wear capacity of monolithic zirconia. The wear behavior of monolithic zirconia was frequently compared to the wear behavior of other ceramics, such as feldspathic porcelain, lithium disilicate-based glass-ceramic and leucite-reinforced glass-ceramic. Human tooth, ceramics and resin composites were used as antagonist in the investigations. Only short-term clinical studies are available (up to 2 years).
Conclusion:
Literature findings suggest that zirconia monolithic restorations are wear resistant and unlikely to cause excessive wear to the antagonist, especially when compared to feldspathic porcelain and glass-ceramics. Monolithic zirconia should be polished rather than glazed. Yet, none of the polishing systems studied was able to completely restore the initial surface conditions of zirconia after being adjusted with burs. More clinical evidence of the antagonist tooth wear potential of monolithic zirconia is needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.