Eight virulence factors associated with uropathogenic Escherichia coli (UPEC) were investigated in 204 clinical isolates of E. coli recovered from urine cultures at counts ≥10(5). The bacteria were classified into two groups according to the number of leukocytes in urine samples from which they were isolated: group I ≤8 leukocytes/hpf, 104 strains; group II >8 leukocytes/hpf, 100 strains. Two multiplex PCR systems were used to detect genes encoding adhesin P (pap), adhesin S (sfa), afimbrial adhesin I (afa), siderophore aerobactin (aer), alpha-hemolysin (hly), cytotoxic necrotizing factor type 1 (cnf1), and traT associated with serum resistance. The PAI marker for the virulence island identified in strains CFT072 and CVD432, a marker of enteroaggregative E. coli, was also investigated using PCR. The susceptibility profile of E. coli strains was determined by disk diffusion method. Ninety percent UPEC showed at least one of the virulence genes, the prevalence being traT (76%), aer (41%), PAI (32%), sfa (26%), pap (25%), cnf1 (18%), afa (6%), and hly (5%). There was no significant difference in the distribution of virulence genes between groups I and II. A significantly higher degree of virulence was detected in UPEC group II. The CVD432 gene was not detected in any of the UPECs. Fifty-nine percent of the strains were resistant to at least one of the antimicrobials that we tested; the most common being resistance to ampicillin (51%) and trimethoprim-sulfamethoxazole (44%).
Brown spiders have world-wide distribution and are the cause of health problems known as loxoscelism. Necrotic cutaneous lesions surrounding the bites and less intense systemic signs like renal failure, DIC, and hemolysis were observed. We studied molecular mechanism by which recombinant toxin, biochemically characterized as phospholipase-D, causes direct hemolysis (complement independent). Human erythrocytes treated with toxin showed direct hemolysis in a dose-dependent and time-dependent manner, as well as morphological changes in cell size and shape. Erythrocytes from human, rabbit, and sheep were more susceptible than those from horse. Hemolysis was not dependent on ABO group or Rhesus system. Confocal and FACS analyses using antibodies or GFP-phospholipase-D protein showed direct toxin binding to erythrocytes membrane. Moreover, toxin-treated erythrocytes reacted with annexin-V and showed alterations in their lipid raft profile. Divalent ion chelators significantly inhibited hemolysis evoked by phospholipase-D, which has magnesium at the catalytic domain. Chelators were more effective than PMSF (serine-protease inhibitor) that had no effect on hemolysis. By site-directed mutation at catalytic domain (histidine 12 by alanine), hemolysis and morphologic changes of erythrocytes (but not the toxin's ability of membrane binding) were inhibited, supporting that catalytic activity is involved in hemolysis and cellular alterations but not toxin cell binding. The results provide evidence that L. intermedia venom phospholipase-D triggers direct human blood cell hemolysis in a catalytic-dependent manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.