Triclosan (5-chloro-2-(2,4-dichlorophenoxy)-phenol) is a chlorinated phenolic antibacterial compound found in consumer products. In vitro human pregnane X receptor activation, hepatic phase I enzyme induction, and decreased in vivo total thyroxine (T4) suggest adverse effects on thyroid hormone homeostasis. Current research tested the hypothesis that triclosan decreases circulating T4 via upregulation of hepatic catabolism and transport. Weanling female Long-Evans rats received triclosan (0-1000 mg/kg/day) by gavage for 4 days. Whole blood and liver were collected 24 h later. Total serum T4, triiodothyronine (T3), and thyroid-stimulating hormone (TSH) were measured by radioimmunoassay. Hepatic microsomal assays measured ethoxyresorufin-O-deethylase, pentoxyresorufin-O-deethylase (PROD), and uridine diphosphate glucuronyltransferase enzyme activities. The messenger RNA (mRNA) expression of cytochrome P450s 1a1, 2b1/2, and 3a1/23; UGTs 1a1, 1a6, and 2b5; sulfotransferases 1c1 and 1b1; and hepatic transporters Oatp1a1, Oatp1a4, Mrp2, and Mdr1b was measured by quantitative reverse transcriptase PCR. Total T4 decreased dose responsively, down to 43% of control at 1000 mg/kg/day. Total T3 was decreased to 89 and 75% of control at 300 and 1000 mg/kg/day. TSH did not change. Triclosan dose dependently increased PROD activity up to 900% of control at 1000 mg/kg/day. T4 glucuronidation increased nearly twofold at 1000 mg/kg/day. Cyp2b1/2 and Cyp3a1/23 mRNA expression levels were induced twofold and fourfold at 300 mg/kg/day. Ugt1a1 and Sult1c1 mRNA expression levels increased 2.2-fold and 2.6-fold at 300 mg/kg/day. Transporter mRNA expression levels were unchanged. These data denote important key events in the mode of action for triclosan-induced hypothyroxinemia in rats and suggest that this effect may be partially due to upregulation of hepatic catabolism but not due to mRNA expression changes in the tested hepatic transporters.
This work tests the mode-of-action (MOA) hypothesis that maternal and developmental triclosan (TCS) exposure decreases circulating thyroxine (T4) concentrations via up-regulation of hepatic catabolism and elimination of T4. Time-pregnant Long-Evans rats received TCS po (0–300 mg/kg/day) from gestational day (GD) 6 through postnatal day (PND) 21. Serum and liver were collected from dams (GD20, PND22) and offspring (GD20, PND4, PND14, PND21). Serum T4, triiodothyronine (T3), and thyroid stimulating hormone (TSH) concentrations were measured by radioimmunoassay. Ethoxy-O-deethylase (EROD), pentoxyresorufin-O-depentylase (PROD) and uridine diphosphate glucuronyltransferase (UGT) enzyme activities were measured in liver microsomes. Custom Taqman® qPCR arrays were employed to measure hepatic mRNA expression of select cytochrome P450s, UGTs, sulfotransferases, transporters, and thyroid-hormone responsive genes. TCS was quantified by LC/MS/MS in serum and liver. Serum T4 decreased approximately 30% in GD20 dams and fetuses, PND4 pups and PND22 dams (300 mg/kg/day). Hepatic PROD activity increased 2- to 3-fold in PND4 pups and PND22 dams, and UGT activity was 1.5-fold higher in PND22 dams only (300 mg/kg/day). Minor up-regulation of Cyp2b and Cyp3a expression in dams was consistent with hypothesized activation of the constitutive androstane and/or pregnane X receptor. T4 reductions of 30% for dams and GD20 and PND4 offspring with concomitant increases in PROD (PND4 neonates and PND22 dams) and UGT activity (PND22 dams) suggest that up-regulated hepatic catabolism may contribute to TCS–induced hypothyroxinemia during development. Serum and liver TCS concentrations demonstrated greater fetal than postnatal internal exposure, consistent with the lack of T4 changes in PND14 and PND21 offspring. These data support the MOA hypothesis that TCS exposure leads to hypothyroxinemia via increased hepatic catabolism; however, the minor effects on thyroid hormone metabolism may reflect the low efficacy of TCS as thyroid hormone disruptor or highlight the possibility that other MOAs may also contribute to the observed maternal and early neonatal hypothyroxinemia.
High-throughput screening (HTPS) assays to detect inhibitors of thyroperoxidase (TPO), the enzymatic catalyst for thyroid hormone (TH) synthesis, are not currently available. Herein, we describe the development of a HTPS TPO inhibition assay. Rat thyroid microsomes and a fluorescent peroxidase substrate, Amplex UltraRed (AUR), were employed in an end-point assay for comparison to the existing kinetic guaiacol (GUA) oxidation assay. Following optimization of assay metrics, including Z', dynamic range, and activity, using methimazole (MMI), the assay was tested with a 21-chemical training set. The potency of MMI-induced TPO inhibition was greater with AUR compared to GUA. The dynamic range and Z' score with MMI were as follows: 127-fold and 0.62 for the GUA assay, 18-fold and 0.86 for the 96-well AUR assay, and 11.5-fold and 0.93 for the 384-well AUR assay. The 384-well AUR assay drastically reduced animal use, requiring one-tenth of the rat thyroid microsomal protein needed for the GUA 96-well format assay. Fourteen chemicals inhibited TPO, with a relative potency ranking of MMI > ethylene thiourea > 6-propylthiouracil > 2,2',4,4'-tetrahydroxy-benzophenone > 2-mercaptobenzothiazole > 3-amino-1,2,4-triazole > genistein > 4-propoxyphenol > sulfamethazine > daidzein > 4-nonylphenol > triclosan > iopanoic acid > resorcinol. These data demonstrate the capacity of this assay to detect diverse TPO inhibitors. Seven chemicals acted as negatives: 2-hydroxy-4-methoxybenzophenone, dibutylphthalate, diethylhexylphthalate, diethylphthalate, 3,5-dimethylpyrazole-1-methanol, methyl 2-methyl-benzoate, and sodium perchlorate. This assay could be used to screen large numbers of chemicals as an integral component of a tiered TH-disruptor screening approach.
Disruption of maternal thyroid hormones during fetal developmental may result in irreversible neurological consequences in offspring. The present study tested the hypothesis that perinatal triclosan exposure of dams decreases thyroxine in dams and offspring prior to weaning. Pregnant Long-Evans rats received triclosan by oral gavage (0-300 mg/kg/d) in corn oil from gestational day (GD)6 through postnatal day (PND)21. Serum was obtained from pups on PND4, 14, and 21, and from dams on PND22. Serum thyroxine (T4) was reduced 31% in dams on PND22. In pups, a unique pattern of hypothyroxinemia was observed; serum T4 decreased 27% in PND4 pups with no significant reduction observed on PND14 or PND21. Comparable reductions of approximately 30% in serum T4 at 300 mg/kg/d for dams and PND4 neonates and a lack of effect at PND14 and PND21 suggest that toxicokinetic or toxicodynamic factors may have contributed to a reduced exposure or a reduced toxicological response during the lactation period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.