The investigation of volatile organic compounds (VOCs) associated with decomposition is an emerging field in forensic taphonomy due to their importance in locating human remains using biological detectors such as insects and canines. A consistent decomposition VOC profile has not yet been elucidated due to the intrinsic impact of the environment on the decomposition process in different climatic zones. The study of decomposition VOCs has typically occurred during the warmer months to enable chemical profiling of all decomposition stages. The present study investigated the decomposition VOC profile in air during both warmer and cooler months in a moist, mid-latitude (Cfb) climate as decomposition occurs year-round in this environment. Pig carcasses (Sus scrofa domesticus L.) were placed on a soil surface to decompose naturally and their VOC profile was monitored during the winter and summer months. Corresponding control sites were also monitored to determine the natural VOC profile of the surrounding soil and vegetation. VOC samples were collected onto sorbent tubes and analyzed using comprehensive two-dimensional gas chromatography – time-of-flight mass spectrometry (GC×GC-TOFMS). The summer months were characterized by higher temperatures and solar radiation, greater rainfall accumulation, and comparable humidity when compared to the winter months. The rate of decomposition was faster and the number and abundance of VOCs was proportionally higher in summer. However, a similar trend was observed in winter and summer demonstrating a rapid increase in VOC abundance during active decay with a second increase in abundance occurring later in the decomposition process. Sulfur-containing compounds, alcohols and ketones represented the most abundant classes of compounds in both seasons, although almost all 10 compound classes identified contributed to discriminating the stages of decomposition throughout both seasons. The advantages of GC×GC-TOFMS were demonstrated for detecting and identifying trace levels of VOCs, particularly ethers, which are rarely reported as decomposition VOCs.
Chronic pulmonary infections are the principal cause of morbidity and mortality in individuals with cystic fibrosis (CF). Due to the polymicrobial nature of these infections, the identification of the particular bacterial species responsible is an essential step in diagnosis and treatment. Current diagnostic procedures are time-consuming, and can also be expensive, invasive and unpleasant in the absence of spontaneously expectorated sputum. The development of a rapid, non-invasive methodology capable of diagnosing and monitoring early bacterial infection is desired. Future visions of real-time, in situ diagnosis via exhaled breath testing rely on the differentiation of bacteria based on their volatile metabolites. The objective of this proof-of-concept study was to investigate whether a range of CF-associated bacterial species (i.e. Pseudomonas aeruginosa, Burkholderia cenocepacia, Haemophilus influenzae, Stenotrophomonas maltophilia, Streptococcus pneumoniae and Streptococcus milleri) could be differentiated based on their in vitro volatile metabolomic profiles. Headspace samples were collected using solid phase microextraction (SPME), analyzed using comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC×GC-TOFMS) and evaluated using principal component analysis (PCA) in order to assess the multivariate structure of the data. Although it was not possible to effectively differentiate all six bacteria using this method, the results revealed that the presence of a particular pattern of VOCs (rather than a single VOC biomarker) is necessary for bacterial species identification. The particular pattern of VOCs was found to be dependent upon the bacterial growth phase (e.g. logarithmic versus stationary) and sample storage conditions (e.g. short-term versus long-term storage at -18 °C). Future studies of CF-associated bacteria and exhaled breath condensate will benefit from the approaches presented in this study and further facilitate the production of diagnostic tools for the early detection of bacterial lung infections.
Cadaver-detection dogs are trained to locate victim remains; however, their training is 5 challenging due to limited access to human remains. Animal analogues, such as pigs, are 6 typically used as alternative training aids. This project aimed to compare the visual 7 decomposition and volatile organic compound (VOC) profile of human and pig remains in an 8 Australian environment, to determine the suitability of pig remains as human odour 9 analogues for cadaver-detection dog training. Four human cadavers and four pig carcasses 10 were placed in an outdoor environment at the Australian Facility for Taphonomic 11 Experimental Research (AFTER) across two seasons. Decomposition was monitored 12 progressively in summer and winter. VOCs were collected onto sorbent tubes and analysed 13 using comprehensive two-dimensional gas chromatography-time-of-flight mass 14 spectrometry. Visual observations highlighted the differences in decomposition rates, with 15 pig remains progressing through all stages of decomposition, and human remains undergoing 16 differential decomposition and mummification. Chemical and statistical analysis highlighted 17 variations in the composition and abundance of VOCs over time between the odour profiles. 18 This study concluded that the visual decomposition and VOC profile of pig and human 19 remains was dissimilar. However, in cooler conditions the results from each species became 20 more comparable, especially during the early stages of decomposition.
Following a mass disaster, it is important that victims are rapidly located as the chances of survival decrease greatly after approximately 48 h. Urban search and rescue (USAR) teams may use a range of tools to assist their efforts but detector dogs still remain one of the most effective search tools to locate victims of mass disasters. USAR teams can choose to deploy human scent dogs (trained to locate living victims) or human remains detection (HRD) dogs (trained to locate deceased victims). However, little is known about the variation between live human scent and postmortem human remains scent and the timeframe during which one type of scent transitions to the other. The aim of the current study was to measure the change in the scent profile of human decomposition analogues during the first 72 h postmortem by measuring the volatile organic compounds (VOCs) that comprise the odour. Three pig carcasses (Sus scrofa domesticus L.) were placed on a soil surface and allowed to decompose under natural conditions. Decomposition odour was sampled frequently up to 75 h postmortem and analysed using comprehensive two-dimensional gas chromatography – time-of-flight mass spectrometry (GC×GC-TOFMS). A total of 105 postmortem VOCs were identified during the early postmortem period. The VOC profile during the early postmortem period was highly dynamic, changing both hourly and daily. A transition period was observed after 43 h postmortem, where the VOC profile appeared to shift from a distinct antemortem odour to a more generalised postmortem odour. These findings are important in informing USAR teams and their use of detector dogs for disaster victim recovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.