This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
SARS-CoV-2 non-structural protein 3 (Nsp3) contains a macrodomain that is essential for virus replication and is thus an attractive target for drug development. This macrodomain is thought to counteract the host interferon (IFN) response, an important antiviral signalling cascade, via the removal of ADP-ribose modifications catalysed by host poly(ADP-ribose) polymerases (PARPs). Here, we show that activation of the IFN response induces ADP-ribosylation of host proteins and that ectopic expression of the SARS-CoV-2 Nsp3 macrodomain reverses this modification in human cells. We further demonstrate that this can be used to screen for cell-active macrodomain inhibitors without the requirement for BSL-3 facilities. This IFN-induced ADP-ribosylation is dependent on the PARP9/DTX3L heterodimer, but surprisingly the expression of Nsp3 macrodomain or PARP9/DTX3L deletion do not impair STAT1 phosphorylation or the induction of IFN-responsive genes. Our results suggest that PARP9/DTX3L-dependent ADP-ribosylation is a downstream effector of the host IFN response and that the cellular function of the SARS-CoV-2 Nsp3 macrodomain is to hydrolyse this end product of IFN signalling, and not to suppress the IFN response itself.
During cell division, chromosomes align at the equator of the cell before sister chromatids separate to move to each daughter cell during anaphase. We use high-speed imaging, Bayesian modelling and quantitative analysis to examine the regulation of centromere dynamics through the metaphase-toanaphase transition. We find that, contrary to the apparent instantaneous separation seen in lowfrequency imaging, centromeres separate asynchronously over 1-2 minutes. The timing of separations negatively correlates with the centromere intersister distance during metaphase, which could potentially be explained by variable amounts of cohesion at centromeres. Depletion of condensin I increases this asynchrony. Depletion of condensin II, on the other hand, abolishes centromere metaphase oscillations and impairs centromere speed in anaphase. These results suggest that condensin complexes have broader direct roles in mitotic chromosome dynamics than previously believed and may be crucial for the regulation of chromosome segregation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.