Uncovering the genetic and evolutionary basis of local adaptation is a major focus of evolutionary biology. The recent development of cost-effective methods for obtaining high-quality genome-scale data makes it possible to identify some of the loci responsible for adaptive differences among populations. Two basic approaches for identifying putatively locally adaptive loci have been developed and are broadly used: one that identifies loci with unusually high genetic differentiation among populations (differentiation outlier methods) and one that searches for correlations between local population allele frequencies and local environments (genetic-environment association methods). Here, we review the promises and challenges of these genome scan methods, including correcting for the confounding influence of a species’ demographic history, biases caused by missing aspects of the genome, matching scales of environmental data with population structure, and other statistical considerations. In each case, we make suggestions for best practices for maximizing the accuracy and efficiency of genome scans to detect the underlying genetic basis of local adaptation. With attention to their current limitations, genome scan methods can be an important tool in finding the genetic basis of adaptive evolutionary change.
Although genome scans have become a popular approach towards understanding the genetic basis of local adaptation, the field still does not have a firm grasp on how sampling design and demographic history affect the performance of genome scans on complex landscapes. To explore these issues, we compared 20 different sampling designs in equilibrium (i.e. island model and isolation by distance) and nonequilibrium (i.e. range expansion from one or two refugia) demographic histories in spatially heterogeneous environments. We simulated spatially complex landscapes, which allowed us to exploit local maxima and minima in the environment in 'pair' and 'transect' sampling strategies. We compared F(ST) outlier and genetic-environment association (GEA) methods for each of two approaches that control for population structure: with a covariance matrix or with latent factors. We show that while the relative power of two methods in the same category (F(ST) or GEA) depended largely on the number of individuals sampled, overall GEA tests had higher power in the island model and F(ST) had higher power under isolation by distance. In the refugia models, however, these methods varied in their power to detect local adaptation at weakly selected loci. At weakly selected loci, paired sampling designs had equal or higher power than transect or random designs to detect local adaptation. Our results can inform sampling designs for studies of local adaptation and have important implications for the interpretation of genome scans based on landscape data.
FST outlier tests are a potentially powerful way to detect genetic loci under spatially divergent selection. Unfortunately, the extent to which these tests are robust to nonequilibrium demographic histories has been understudied. We developed a landscape genetics simulator to test the effects of isolation by distance (IBD) and range expansion on FST outlier methods. We evaluated the two most commonly used methods for the identification of FST outliers (FDIST2 and BayeScan, which assume samples are evolutionarily independent) and two recent methods (FLK and Bayenv2, which estimate and account for evolutionary nonindependence). Parameterization with a set of neutral loci (‘neutral parameterization’) always improved the performance of FLK and Bayenv2, while neutral parameterization caused FDIST2 to actually perform worse in the cases of IBD or range expansion. BayeScan was improved when the prior odds on neutrality was increased, regardless of the true odds in the data. On their best performance, however, the widely used methods had high false-positive rates for IBD and range expansion and were outperformed by methods that accounted for evolutionary nonindependence. In addition, default settings in FDIST2 and BayeScan resulted in many false positives suggesting balancing selection. However, all methods did very well if a large set of neutral loci is available to create empirical P-values. We conclude that in species that exhibit IBD or have undergone range expansion, many of the published FST outliers based on FDIST2 and BayeScan are probably false positives, but FLK and Bayenv2 show great promise for accurately identifying loci under spatially divergent selection.
Loci responsible for local adaptation are likely to have more genetic differentiation among populations than neutral loci. However, neutral loci can vary widely in their amount of genetic differentiation, even over the same geographic range. Unfortunately, the distribution of differentiation--as measured by an index such as F(ST)--depends on the details of the demographic history of the populations in question, even without spatially heterogeneous selection. Many methods designed to detect F(ST) outliers assume a specific model of demographic history, which can result in extremely high false positive rates for detecting loci under selection. We develop a new method that infers the distribution of F(ST) for loci unlikely to be strongly affected by spatially diversifying selection, using data on a large set of loci with unknown selective properties. Compared to previous methods, this approach, called OutFLANK, has much lower false positive rates and comparable power, as shown by simulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.