Two broiler lines A and B were fed experimental diets from 21 to 42 days with an objective to determine Pectoralis major protein turnover (PT) as affected by the dietary amino acid (AA) levels and ambient temperature. Experimental diets (n = 9 replicate pens per diet) were formulated to 3,150 kcal/kg with five levels of digestible lysine (dLys) −80, 90, 100, 110 and 120% of recommended AA level giving g dlys/Mcal values of 2.53, 2.85, 3.17, 3.48 and 3.80 respectively. All other AA was formulated to a fixed ratio to dLys. Fractional synthesis or degradation rates (FSR or FDR) of P. major were measured on day 36 and day 42 for all dietary treatment levels for both broiler lines using stable isotope of AA (15N‐phenylalanine) as metabolic tracer. Experimental feeding studies were conducted once in hot season (24‐hr mean ~ 85.3°F; 80.9% RH) and repeated in cool season (24‐hr mean ~ 71.6°F; 61.7% RH) of the year. The FSR values increased (p < .05) as digestible AA in diet increased for both broiler lines in hot season until break point FSR occurring at 106.2% AA level. The average FSR values measured were higher for Line B at day 36 (20.98%/D for Line B vs. 20.69%/D for Line A) and at day 42 (16.07%/D for Line B vs. 12.47% D for Line A). FDR values observed at day 36 and day 42 were not different between lines (p > .05). Similar trends but elevated values of FSR and FDR in cool season than in hot season were recorded for both the lines. Line B showed the higher mixed muscle protein accretion (%/D) than Line A by actually increasing the FSR which was correlated by higher lean mass deposition and higher feed intake (p < .05). The overall findings indicated that PT response in P. major due to effects of digestible AA levels and ambient temperature was different and line‐specific.
Selection for quantitative traits in meat broilers such as breast yield and growth rate exert physiological pressure leading to ante mortem histological and biochemical alterations in muscle tissues. The poultry industry has recently witnessed a myopathy condition affecting Pectoralis major (breast muscle) of broilers, called woody breast (WB), an etiology still unclear to scientific community. A study was conducted to characterize the WB myopathy in a meat broiler line at its finishing phase (d 41) in terms of heat production (HP), microbiota and plasma metabolites. Two treatment groups were studied-WB affected (myopathy) and normal (non-myopathy) broiler; n = 20 in each group. Indirect calorimetry was utilized for HP measurement. Furthermore, body composition (BC) analysis was also performed using dual-energy x-ray absorptiometry (DEXA). Microbiota in ileal digesta was studied with PCR amplified 16s rRNA gene. LC-MS targeted metabolomics was performed to understand differential expression of plasma metabolites. Results showed that there was difference in fasting HP (P < 0.05) between these two treatment groups, with non-myopathy broiler producing more heat which was indicative of higher body protein content validated by higher protein: fat ratio by BC results. Less protein content in myopathy bird could be due to probable higher mixed muscle degradation occurring in lean tissue as marked by elevated 3-methylhistidine expression in plasma. Microbiota results showed unclassified Lactobacillus as predominant genus with higher abundance occurring in myopathy group; whereas at species level, L. acidipiscis was predominant bacteria for non-myopathy broiler. Differentially significant metabolites (P < 0.05) identified from plasma metabolome between these two treatment groups were homocysteine, cyclic GMP, trimethylamine N-oxide (TMAO), tyramine, carnitine, and acetylcarnitine, which were all associated to cardiovascular system. The findings suggest that more research in meat broilers could be opted toward delivering reduced vascularity issues to alleviate this myopathy condition.
Changes in heat production (HP) and body composition (BC) in modern broiler breeders can provide means to understand nutrient utilization. Twelve Cobb 500 breeders were evaluated 10 times from 26 to 59 wk of age. The same wired caged breeders were moved to respiratory chambers connected to an indirect calorimetry to obtain oxygen consumption (VO2) and carbon dioxide production (VCO2), HP, and respiratory exchange ratio (RER). The same hens were evaluated for BC using a dual X-ray absorptiometry (DEXA). Data were analyzed during light (16 h) and dark (8 h) period using a mixed model to evaluate calorimetry parameters, a factorial design 2 × 10 for normalized calorimetry parameters, and Complete Randomized Design (CRD)-one way ANOVA for BC. Means were separated by Tukey-Honest Significant difference (HSD). HP increased with age (d) in 0.152 kcal/d, VO2 and VCO2 were 0.031 and 0.024 L/d per each increase in age (d), respectively. In the light period, hens consumed +17.4 L/d VO2 and produced +18.9 L/d VCO2 (P < 0.01). HP during the dark period was 84 kcal/kg0.75 and during the light period was 115 kcal/kg0.75. RER decreased with age until 43 wk and remained the same until 59 wk suggesting more fat and/or protein being oxidized at later periods of production. Lean body mass ranged from 642 to 783 g/kg during the whole study reaching the lowest at 37 and 50 wk and the highest at 26 to 33 wk (P < 0.01). Body fat ranged from 168 to 261 g/kg with the lowest at 26 to 33 wk and the highest at 50 wk of age (P < 0.01). Broiler breeder females may be catabolizing fat energy reserves from 50 wk onwards when the egg production is reduced, and HP increased at 54 and 59 wk (P < 0.01) due to higher energy required for maintenance of a higher lean mass structure. Broiler breeders change nutrient fuel use during egg production. Indirect calorimetry and DEXA can be used to pursue further feed strategies to maximize egg production and maintain a healthy breeder.
Two meat-type broiler strains, strain A and strain B, were reared in floor pens (25 birds/pen; 45 pens/strain) for pectoralis (P) major collagen and mixed muscle protein turnover ( PT ) study from 0–56 D using primary breeder nutrition and husbandry guidelines. Forty broilers (n = 10/strain for collagen PT; n = 10/strain for mixed muscle PT) were selected at each sampling age at day 21, 28, 35, 42, and 56 and infused with 1- 13 C proline ( Pro ) and 15 N-phenylalanine ( Phe ) which are used as amino acid tracers for collagen and mixed muscle PT measurements, respectively. Muscle and plasma samples were collected, and enrichments of 1- 13 C Pro and 15 N-Phe were determined using mass spectrometry. Fractional synthesis rate ( FSR ) and fractional degradation rate ( FDR ) were measured for collagen and mixed muscle using precursor-product principle. At day 42, after separating the sampled broilers as myopathy (woody breast [ WB ] score > 1) and nonmyopathy (WB = 0), plasma metabolites were screened for differential 3-methyhistidine ( 3-MH ) expression for both strains. Data were analyzed using one-way ANOVA using t test. Results showed that collagen and mixed muscle FSR and FDR in pectoralis major decreased ( P < 0.05) for both strains as the broilers aged. FSR for collagen and FDR for mixed muscle were higher for strain B than those for strain A ( P < 0.05). Total collagen was higher ( P < 0.05) for strain B. Differentially expressed 3-MH in plasma was higher ( P < 0.05) for myopathy-affected broilers indicating greater muscle degradation occurring in myopathy-affected broiler types for both strains. 3-MH Expression in plasma was higher for strain B than for strain A. The research findings showing an increased collagen content per unit muscle weight in pectoralis major in strain B (than in strain A) could be due to higher mixed muscle FDR and increased collagen FSR occurring during the grow-out period. The increased degradation of muscle fibers and probable replacement of muscle-specific protein with connective tissue, mainly collagen, was an evident pathophysiological phenomenon occurring in myopathy-affected broilers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.