Time keeping devices have been designed, fabricated, and widely deployed throughout history to regulate daily functions including commerce and transportation. In addition, horology offers a catalog of mankind’s innovation and demonstrates important scientific and engineering concepts. The investigation and analysis of clock systems from a mechatronics perspective illustrates the evolution of gear systems, feedback control, and transformation of energy for time measurement. In this paper, the operational behavior of an eight day mechanical clock has been studied through mathematical models, numerical simulation, and computer animation. The classroom exploration of time keeping mechanisms offers practical applications of physical principles.
The evolution of science and technology throughout history parallels the development of time keeping devices which assist mankind in measuring and coordinating their daily schedules. The earliest clocks used the natural behavior of the sun, sand, and water to approximate fixed time intervals. In the medieval period, mechanical clocks were introduced that were driven by weights and springs which offered greater time accuracy due to improved design and materials. In the last century, electric motor driven clocks and digital circuits have allowed for widespread distribution of clock devices to many homes and individuals. In this paper, a series of eight laboratory experiments have been created which use a time keeping theme to introduce basic mechanical and electrical engineering concepts, while offering the opportunity to weave societal implications into the discussions. These bench top and numerical studies include clock movements, pendulums, vibration and acoustic analysis, material properties, circuit breadboards, microprocessor programming, computer simulation, and artistic water clocks. For each experiment, the learning objectives, equipment and materials, and laboratory procedures are listed. To determine the learning effectiveness of each experiment, an assessment tool will be used to gather student feedback for laboratory improvement. Finally, these experiments can also be integrated into academic programs that emphasize science, technology, engineering and mathematical concepts within a societal context.
The tower clock has served European communities beginning in the 14 th century and American towns since the 18 th century. Although the early clocks acted as audible alarms, they progressed to feature time dials and synchronized melodies from struck bells. The mechanical tower clock consists of gear trains, escapement, pendulum, driving weights, large dials with hour/minute hands, and bell(s) with striking mechanism. These clock components offer excellent examples of fundamental engineering concepts and control system principles. In this paper, a Seth Thomas Graham deadbeat escapement tower clock has been investigated. A brief survey of the societal impact of horology technology has been offered to motivate the study. The general operation of a weight driven tower clock has been reviewed and the governing mathematical equations discussed. Representative numerical and experimental results have been presented and discussed to validate the model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.