There is an ongoing effort to develop better methods for noninvasive detection and characterization of thrombus. Here we describe the synthesis and evaluation of three new fibrin-targeted PET probes (FBP1, FBP2, FBP3). Three fibrin-specific peptides were conjugated as DOTA-monoamides at the C- and N- termini, and chelated with 64CuCl2. Probes were prepared with a specific activity ranging from 10 – 130 µCi/nmol. Both the peptides and the probes exhibited nanomolar dissociation constants (Kd) for the soluble fibrin fragment DD(E), although the Cu-DOTA derivatization resulted in a 2–3 fold loss in affinity relative to the parent peptide. Biodistribution and imaging studies were performed in a rat model of carotid artery thrombosis. For FBP1 and FBP2 at 120 min post injection, the vessel containing thrombus showed the highest concentration of radioactivity after the excretory organs, i.e. the liver and kidneys. This was confirmed ex vivo by autoradiography which showed > 4-fold activity in the thrombus containing artery compared to the contralateral artery. FBP3 showed much lower thrombus uptake and the difference was traced to greater metabolism of this probe. Hybrid MR-PET imaging with FBP1 or FBP2 confirmed that these probes were effective for detection of arterial thrombus in this rat model. Thrombus was visible on PET images as a region of high activity that corresponded to a region of arterial occlusion identified by simultaneous MR angiography. FBP1 and FBP2 represent promising new probes for the molecular imaging of thrombus.
A photosensitive caged copper complex has been prepared from a tetradentate ligand (H2cage) composed of two pyridyl-amide arms connected by a photoreactive nitrophenyl group. H2cage binds Cu2+ in aqueous solution with a stability constant (log beta) of 10.8, which corresponds to a KD of 16 pM at pH 7.4. The neutral Cu2+ complex, [Cu(OH2)(cage)], crystallizes as a distorted trigonal bipyramid coordinated by two amide and two pyridyl N atoms, with a water molecule bound in the trigonal plane. Photolysis with 350 nm UV light cleaves the ligand backbone to release photoproducts with significantly diminished affinity for Cu2+, thereby uncaging the metal ion. When coordinated as the caged complex, copper has diminished reactivity to produce hydroxyl radicals from Fenton-like reaction mixtures containing hydrogen peroxide and ascorbic acid. Postphotolysis, uncaged copper promotes hydroxyl radical formation under the same conditions. The strategy of caging copper is promising for applications where light could be used to trigger release of copper as a pro-oxidant to increase oxidative stress or as a tool to release copper intracellularly to study mechanisms of copper trafficking.
Photolabile metal-containing cages are metal complexes that undergo a change in coordination environment upon exposure to light of an appropriate wavelength. The light-responsive functionality can either be a component of the encapsulating ligand or a property of the metal complex itself. The altered coordination properties of light-responsive complexes can result in release of the coordinated metal ion into its surroundings, a differential reactivity of the metal center, or the liberation of a reactive molecule that had been passivated by binding to the metal center. These triggerable agents can be useful tools for manipulating the bioavailability of metals or their coordinating ligands in order to study biological pathways or for potential therapeutic purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.