The immunomodulatory effects of vitamin D have been described following chronic oral administration to mice or supplementation of cell cultures with 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), the active form of vitamin D. In this study, topically applied 1,25(OH)2D3, enhanced the suppressive capacity of CD4+CD25+ cells from the draining lymph nodes. The effects of topical 1,25(OH)2D3 were compared with those of UVB irradiation, which is the environmental factor required for 1,25(OH)2D3 production in skin. CD4+ cells from the skin-draining lymph nodes (SDLN) of either 1,25(OH)2D3-treated or UVB-irradiated mice had reduced capacity to proliferate to Ags presented in vitro, and could suppress Ag-specific immune responses upon adoptive transfer into naive mice. This regulation was lost upon removal of CD4+CD25+ cells. Furthermore, purified CD4+CD25+ cells from the SDLN of 1,25(OH)2D3-treated or UVB-irradiated mice compared with equal numbers of CD4+CD25+ cells from control mice had increased capacity to suppress immune responses in both in vitro and in vivo assay systems. Following the sensitization of recipient mice with OVA, the proportion of CD4+Foxp3+ cells of donor origin significantly increased in recipients of CD4+CD25+ cells from the SDLN of 1,25(OH)2D3-treated mice, indicating that these regulatory T cells can expand in vivo with antigenic stimulation. These studies suggest that 1,25(OH)2D3 may be an important mediator by which UVB-irradiation exerts some of its immunomodulatory effects.
Vitamin D is produced in skin by UVB radiation (290-320 nm) acting on 7-dehydrocholesterol. The hypotheses that the active vitamin D hormone, 1,25 dihydroxyvitamin D3 (1,25(OH)2D3), would increase the survival of skin cells after UV irradiation and that surviving cells after 1,25(OH)2D3 treatment would have no increase in DNA damage were tested. The survival of keratinocytes post-UVR was significantly greater after treatment with 1,25(OH)2D3 compared to vehicle (P<0.01). Significant reductions in thymine dimers (TDs) in surviving keratinocytes after UVR were noted in the presence of 1,25(OH)2D3 (P<0.001). Nuclear p53 protein expression increased after UVR and was significantly higher in keratinocytes treated with 1,25(OH)2D3 (P<0.01), whereas NO products were significantly reduced (P<0.05). Both the increase in nuclear accumulation of p53 protein and reduced formation of nitric oxide products may contribute to the reduction in TDs seen with 1,25(OH)2D3 after UVR. Reductions in numbers of sunburn cells (P<0.01) and in TDs (P<0.05) were observed 24 hours after UVR in skin sections from Skh:hr1 mice treated with 1,25(OH)2D3. These results are consistent with the proposal that the vitamin D system in skin may be part of an intrinsic protective mechanism against UV damage.
Exposure to ultraviolet radiation (UVR) can lead to a range of deleterious responses in the skin. An important form of damage is the DNA photolesion cyclobutane pyrimidine dimer (CPD). CPDs can be highly mutagenic if not repaired prior to cell division and can lead to UV-induced immunosuppression, making them potentially carcinogenic. UVR exposure also produces vitamin D, a prehormone. Different shapes of the steroid hormone 1a,25-dihydroxyvitamin D 3 [1,25(OH) 2 D 3 ] can produce biological responses through binding either to its cognate nuclear receptor (VDR) to regulate gene transcription or to the VDR associated with plasma membrane caveolae to produce, via signal transduction, nongenomic physiologic responses. Here, we show that both 1,25(OH) 2 D 3 and 1a,25(OH) 2 -lumisterol (JN), a conformationally restricted analogue that can generate only nongenomic responses, are effective inhibitors of UV damage in an immunocompetent mouse (Skh:hr1) model susceptible to UV-induced tumors. Both 1,25(OH) 2 D 3 and JN significantly reduced UVR-induced CPD, apoptotic sunburn cells, and immunosuppression. Furthermore, these compounds inhibited skin tumor development, both papillomas and squamous cell carcinomas, in these mice. The observed reduction of these UV-induced effects by 1,25 (OH) 2 D 3 and JN suggests a role for these compounds in prevention against skin carcinogenesis. To the best of our knowledge, this is the first comprehensive report of an in vivo long-term biological response generated by chronic dosing with a nongenomic-selective vitamin D steroid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.