Perchloroethylene (PERC) is the most common solvent used for dry cleaning in the United States. PERC is a reproductive toxicant, neurotoxicant, potential human carcinogen, and a persistent environmental pollutant. The Environmental Protection Agency is evaluating PERC under the Frank R. Lautenberg Chemical Safety for the 21st Century Act, which amended the Toxic Substances Control Act (amended TSCA), and has mandated that PERC dry cleaning machines be removed from residential buildings. Some local and state programs are also requiring or facilitating transitions to alternative cleaning technologies. However, the potential for these alternatives to harm human health and the environment is not well-understood. This review describes the issues surrounding the use of PERC and alternative solvents for dry cleaning while highlighting the lessons learned from a local government program that transitioned PERC dry cleaners to the safest current alternative: professional wet cleaning. Implications for future public health research and policy are discussed: (1) we must move away from PERC, (2) any transition must account for the economic instability and cultural aspects of the people who work in the industry, (3) legacy contamination must be addressed even after safer alternatives are adopted, and (4) evaluations of PERC alternatives are needed to determine their implications for the long-term health and sustainability of the people who work in the industry.
Background Afghan refugee children resettled in Washington State have the highest prevalence of elevated blood lead levels (BLLs) of any other refugee or immigrant population. Resettled families brought several lead-containing items with them from Afghanistan, including aluminum cookpots. Objectives To evaluate the potential contribution of lead-containing cookpots to elevated BLLs in Afghan children and determine whether safer alternative cookware is available. Methods We screened 40 aluminum cookpots for lead content using an X-ray fluorescence (XRF) analyzer and used a leachate method to estimate the amount of lead that migrates into food. We also tested five stainless steel cookpots to determine whether they would be safer alternatives. Results Many aluminum cookpots contained lead in excess of 100 parts per million (ppm), with a highest detected concentration of 66,374 ppm. Many also leached sufficient lead under simulated cooking and storage conditions to exceed recommended dietary limits. One pressure cooker leached sufficient lead to exceed the childhood limit by 650-fold. In contrast, stainless steel cookpots leached much lower levels of lead. Significance Aluminum cookpots used by refugee families are likely associated with elevated BLLs in local Afghan children. However, this investigation revealed that other U.S. residents, including adults and children, are also at risk of poisoning by lead and other toxic metals from some imported aluminum cookpots. Impact Statement Some aluminum cookware brought from Afghanistan by resettled families as well as cookpots available for purchase in the United States represent a previously unrecognized source of lead exposure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.