The excess heat capacity (Δ C ) of mixtures of dipalmitoylphosphatidylcholine (DPPC) and cholesterol (Chol) is examined in detail in large unilamellar vesicles (LUVs), both experimentally, using differential scanning calorimetry (DSC), and theoretically, using a three-state Ising model. The model postulates that DPPC can access three conformational states: gel, liquid-disordered (L), and liquid-ordered (L). The L state, however, is only available if coupled with interaction with an adjacent Chol. Δ C was calculated using Monte Carlo simulations on a lattice and compared to experiment. The DSC results in LUVs are compared with literature data on multilamellar vesicles (MLVs). The enthalpy change of the complete phase transition from gel to L is identical in LUVs and MLVs, and the melting temperatures ( T) are similar. However, the DSC curves in LUVs are significantly broader, and the maxima of Δ C are accordingly smaller. The parameters in the Ising model were chosen to match the DSC curves in LUVs and the nearest-neighbor recognition (NNR) data. The model reproduces the NNR data very well. It also reproduces the phase transition in DPPC, the freezing point depression induced by Chol, and the broad component of Δ C in DPPC/Chol LUVs. However, there is a sharp component, between 5 and 15 mol % Chol, that the model does not reproduce. The broad component of Δ C becomes dominant as Chol concentration increases, indicating that it involves melting of the L phase. Because the simulations reproduce this component, the conclusions regarding the nature of the phase transition at high Chol concentrations and the structure of the L phase are important: there is no true phase separation in DPPC/Chol LUVs. There are large domains of gel and L phase coexisting below T of DPPC, but above T the three states of DPPC are mixed with Chol, although clusters persist.
The global pandemic caused by acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected millions of people and paralyzed healthcare systems worldwide. Developing rapid and accurate tests to detect and quantify anti-SARS-CoV-2 antibodies in complex fluids is critical to (i) track and address the spread of SARS-CoV-2 variants with different virulence and (ii) support the industrial manufacturing and clinical administration of anti-SARS-CoV-2 therapeutic antibodies. Conventional immunoassays, such as lateral flow, ELISA, and surface plasmon resonance (SPR), are either qualitative or, when quantitative, are laborious and expensive and suffer from high variability. Responding to these challenges, this study evaluates the performance of the Dual-Affinity Ratiometric Quenching (DARQ) assay for the quantification of anti-SARS-CoV-2 antibodies in bioprocess harvests and intermediate fractions (i.e., a Chinese hamster ovary (CHO) cell culture supernatant and a purified eluate) and human fluids (i.e., saliva and plasma). Monoclonal antibodies targeting the SARS-CoV-2 nucleocapsid as well as the spike protein of the delta and omicron variants are adopted as model analytes. Additionally, conjugate pads loaded with dried protein were studied as an at-line quantification method that can be used in clinical or manufacturing laboratories. Our results indicate that the DARQ assay is a highly reproducible (coefficient of variation ∼0.5–3%) and rapid (<10 min) test, whose sensitivity (∼0.23–2.5 ng/mL), limit of detection (23–250 ng/mL), and dynamic range (70–1300 ng/mL) are independent of sample complexity, thus representing a valuable tool for monitoring anti-SARS-CoV-2 antibodies.
Recyclable and biodegradable microelectronics, i.e., “green” electronics, are emerging as a viable solution to the global challenge of electronic waste. Specifically, flexible circuit boards represent a prime target for materials development and increasing the utility of green electronics in biomedical applications. Circuit board substrates and packaging are good dielectrics, mechanically and thermally robust, and are compatible with microfabrication processes. Poly(octamethylene maleate (anhydride) citrate) (POMaC) – a citric acid-based elastomer with tunable degradation and mechanical properties – presents a promising alternative for circuit board substrates and packaging. Here, we report the characterization of Elastomeric Circuit Boards (ECBs). Synthesis and processing conditions were optimized to achieve desired degradation and mechanical properties for production of stretchable circuits. ECB traces were characterized and exhibited sheet resistance of 0.599 Ω cm−2, crosstalk distance of <0.6 mm, and exhibited stable 0% strain resistances after 1000 strain cycles to 20%. Fabrication of single layer and encapsulated ECBs was demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.