Gene expression during oocyte maturation and early embryogenesis up to zygotic genome activation requires translational activation of maternally-derived mRNAs. EPAB [embryonic poly(A)-binding protein] is the predominant poly(A)-binding protein during this period in Xenopus, mouse and human. In Xenopus oocytes, ePAB stabilizes maternal mRNAs and promotes their translation. To assess the role of EPAB in mammalian reproduction, we generated Epab-knockout mice. Although Epab−/− males and Epab+/− of both sexes were fertile, Epab−/− female mice were infertile, and could not generate embryos or mature oocytes in vivo or in vitro. Epab−/− oocytes failed to achieve translational activation of maternally-stored mRNAs upon stimulation of oocyte maturation, including Ccnb1 (cyclin B1) and Dazl (deleted in azoospermia-like) mRNAs. Microinjection of Epab mRNA into Epab−/− germinal vesicle stage oocytes did not rescue maturation, suggesting that EPAB is also required for earlier stages of oogenesis. In addition, late antral follicles in the ovaries of Epab−/− mice exhibited impaired cumulus expansion, and a 8-fold decrease in ovulation, associated with a significant down-regulation of mRNAs encoding the EGF (epidermal growth factor)-like growth factors Areg (amphiregulin), Ereg (epiregulin) and Btc (betacellulin), and their downstream regulators, Ptgs2 (prostaglandin synthase 2), Has2 (hyaluronan synthase 2) and Tnfaip6 (tumour necrosis factor α-induced protein 6). The findings from the present study indicate that EPAB is necessary for oogenesis, folliculogenesis and female fertility in mice.
Mitochondria affect numerous aspects of mammalian reproduction. We investigated whether the decrease in oocyte quality associated with aging is related to altered mitochondria. Oocytes from old (12 months) and young (9 weeks) C57BL/6J mice were compared in relation to: mitochondria morphology and dynamics (mitochondria density, coverage, size and shape) throughout folliculogenesis; levels of mitochondrial DNA (mtDNA); mitochondrial stress reflected in the expression of mitochondrial unfolded protein response (mt-UPR) genes; and levels of reactive oxygen species (ROS) under baseline conditions and following H2O2 treatment. In old mice, mitochondria of primary follicle-enclosed oocytes were smaller, with lower mitochondria coverage (total mitochondria µm2/µm2 cytosol area) (p<0.05). Other follicular stages showed a similar trend, but the changes were not significant. Mature oocytes (Metaphase II – MII) from old mice had significantly less mtDNA (p<0.01), and elevated mt-UPR gene Hspd1 expression (p<0.05), compared with those from young mice. ROS levels in aged MII oocytes were also higher following pretreatment with H2O2 (p<0.05). Aging is associated with altered mitochondrial morphological parameters and decreased mtDNA levels in oocytes, as well as an increase in ROS under stressful conditions and elevated expression of mitochondrial stress response gene Hspd1. Delineation of the mechanisms underlying mitochondrial changes associated with ageing may help in the development of diagnostic and therapeutic tools in reproductive medicine.
Oocyte cryopreservation is a promising technology that could benefit women undergoing assisted reproduction. Most studies examining the effects of cryopreservation on fertilization and developmental competence have been done using metaphase IIstage oocytes, while fewer studies have focused on freezing oocytes at the germinal vesicle (GV) stage, followed by in vitro maturation. Herein, we examined the effects of vitrifying GVstage mouse oocytes on cytoplasmic structure and on the ability to undergo cytoplasmic changes necessary for proper fertilization and early embryonic development. We examined the endoplasmic reticulum (ER) as one indicator of cytoplasmic structure, as well as the ability of oocytes to develop Ca 2+ release mechanisms following vitrification and in vitro maturation. Vitrified GV-stage oocytes matured in culture to metaphase II at a rate comparable to that of controls. These oocytes had the capacity to release Ca 2+ following injection of inositol 1,4,5-trisphosphate, demonstrating that Ca 2+ release mechanisms developed during meiotic maturation. The ER remained intact during the vitrification procedure as assessed using the lipophilic fluorescent dye DiI. However, the reorganization of the ER that occurs during in vivo maturation was impaired in oocytes that were vitrified before oocyte maturation. These results show that vitrification of GV-stage oocytes does not affect nuclear maturation or the continuity of the ER, but normal cytoplasmic maturation as assessed by the reorganization of the ER is disrupted. Deficiencies in factors that are responsible for proper ER reorganization during oocyte maturation could contribute to the low developmental potential previously reported in vitrified in vitro-matured oocytes.assisted reproductive technology, gamete biology, in vitro fertilization, meiosis
Meiotic arrest and resumption in mammalian oocytes are regulated by 2 opposing signaling proteins in the cells of the surrounding follicle: the guanylyl cyclase natriuretic peptide receptor 2 (NPR2), and the luteinizing hormone receptor (LHR). NPR2 maintains a meiosis-inhibitory level of cyclic guanosine 5′-monophosphate (cGMP) until LHR signaling causes dephosphorylation of NPR2, reducing NPR2 activity, lowering cGMP to a level that releases meiotic arrest. However, the signaling pathway between LHR activation and NPR2 dephosphorylation remains incompletely understood, due in part to imprecise information about the cellular localization of these 2 proteins. To investigate their localization, we generated mouse lines in which hemagglutinin epitope tags were added to the endogenous LHR and NPR2 proteins, and used immunofluorescence and immunogold microscopy to localize these proteins with high resolution. The results showed that the LHR protein is absent from the cumulus cells and inner mural granulosa cells, and is present in only 13% to 48% of the outer mural granulosa cells. In contrast, NPR2 is present throughout the follicle, and is more concentrated in the cumulus cells. Less than 20% of the NPR2 is in the same cells that express the LHR. These results suggest that to account for the LH-induced inactivation of NPR2, LHR-expressing cells send a signal that inactivates NPR2 in neighboring cells that do not express the LHR. An inhibitor of gap junction permeability attenuates the LH-induced cGMP decrease in the outer mural granulosa cells, consistent with this mechanism contributing to how NPR2 is inactivated in cells that do not express the LHR.
There is considerable interest in understanding prostate cancer metastasis to bone and the interaction of these cells with the bone microenvironment. Osteonectin/SPARC/BM-40 is a collagen binding matricellular protein that is enriched in bone. Its expression is increased in prostate cancer metastases, and it stimulates the migration of prostate carcinoma cells. However, the presence of osteonectin in cancer cells and the stroma may limit prostate tumor development and progression. To determine how bone matrix osteonectin affects the behavior of prostate cancer cells, we modeled prostate cancer cell-bone interactions using the human prostate cancer cell line PC-3, and mineralized matrices synthesized by wild type and osteonectin-null osteoblasts in vitro. We developed this in vitro system because the structural complexity of collagen matrices in vivo is not mimicked by reconstituted collagen scaffolds or by more complex substrates, like basement membrane extracts. Second harmonic generation imaging demonstrated that the wild type matrices had thick collagen fibers organized into longitudinal bundles, whereas osteonectin-null matrices had thinner fibers in random networks. Importantly, a mouse model of prostate cancer metastases to bone showed a collagen fiber phenotype similar to the wild type matrix synthesized in vitro. When PC-3 cells were grown on the wild type matrices, they displayed decreased cell proliferation, increased cell spreading, and decreased resistance to radiation-induced cell death, compared to cells grown on osteonectin-null matrix. Our data support the idea that osteonectin can suppress prostate cancer pathogenesis, expanding this concept to the microenvironment of skeletal metastases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.