Stock assessments are critical to inform decisions for sustainable fisheries management. Environmental DNA (eDNA) analysis is a potential tool for assessing fish biomass and populations to aid in stock assessments. To facilitate modeling of biomass based on eDNA data, shedding and decay rates are needed. We designed species‐specific, probe‐based qPCR assays for three economically important fish species: black sea bass (Centropristis striata), winter flounder (Pseudopleuronectes americanus), and summer flounder (Paralichthys dentatus). Winter flounder eDNA was measured using two qPCR assays (135 and 292 bp). We report the eDNA shedding and decay rates and the associated variability from two replicate experimental systems. The eDNA decay rates were not significantly different between all species. The eDNA shedding rates between the two replicate systems were significantly different for winter flounder (135 bp assay) and summer flounder. qPCR amplicon length did not affect the eDNA decay rates for winter flounder. The three new qPCR assays were tested in environmental waters alongside traditional trawl surveys. No eDNA from BSB, WF, or SF was detected by eDNA methods, and out of 13 bottom trawls over 6 days only 1 WF, 1 SF, and 2 BSB were caught. This research presents three new, efficient qPCR assays and shows agreement between eDNA methods and trawl surveys suggesting low abundance or absence of target fish.
Background Little is known about the effect of drought on all-cause mortality, especially in higher income countries such as the United States. As the frequency and severity of droughts are likely to increase, understanding the connections between drought and mortality becomes increasingly important. Methods Our exposure variable was an annual cumulative drought severity score based on the 1-month, county-level Standardized Precipitation Evapotranspiration Index. The outcome variables of demographic subgroup-specific all-cause mortality count data per year were obtained from the National Vital Statistics System. Any counts below 10 deaths were censored in that demographic group per county. We modeled county-stratum-year mortality using interval-censored negative binomial regression with county-level random intercepts, for each combined age-race-sex stratum either with or without further stratification by climate regions. Fixed effects meta-regression was used to test the associations between age, race, sex, and region with the drought-mortality regression coefficients. Predictive margins were then calculated from the meta-regression model to estimate larger subgroup (e.g., ‘race’ or ‘sex’) associations of drought with mortality. Results Most of the results were null for associations between drought severity and mortality, across joint strata of race, age, sex and region, but incidence rate ratios (IRRs) for 17 subgroups were significant after accounting for the multiple testing; ten were < 1 indicating a possible protective effect of drought on mortality for that particular subpopulation. The meta-regression indicated heterogeneity in the association of drought with mortality according to race, climate region, and age, but not by sex. Marginal means of the estimated log-incidence rate ratios differed significantly from zero for age groups 25–34, 35–44, 45–54 and 55–64; for the white race group; and for the South, West and Southwest regions, in the analysis that included wet county-years. The margin of the meta-regression model suggested a slightly negative, but not statistically significant, association of drought with same-year mortality in the overall population. Conclusions There were significant, heterogeneous-direction associations in subpopulation-stratified models, after controlling for multiple comparisons, suggesting that the impacts of drought on mortality may not be monolithic across the United States. Meta-regression identified systematic differences in the associations of drought severity with all-cause mortality according to climate region, race, and age. These findings suggest there may be important contextual differences in the effects of drought severity on mortality, motivating further work focused on local mechanisms. We speculate that some of the estimated negative associations of drought severity with same-year mortality could be consistent with either a protective effect of drought on total mortality in the same year, or with a delayed health effect of drought beyond the same year. Further research is needed to clarify associations of drought with more specific causes of death and with sublethal health outcomes, for specific subpopulations, and considering lagged effects occurring beyond the same year as the drought.
Temporal trends in plasma concentrations of per- and polyfluoroalkyl substances (PFAS) in free-ranging bottlenose dolphins (Tursiops truncatus) inhabiting two geographic areas: Indian River Lagoon, Florida over the years 2003–2015 and the waters surrounding Charleston, South Carolina over 2003–2013, were examined. Nine PFAS met the inclusion criteria for analysis based on percent of values below level of detection and sampling years. Proportionate percentiles parametric quantile regression assuming lognormal distributions was used to estimate the average ratio of PFAS concentrations per year for each chemical. Plasma concentrations decreased over time for perfluorodecanoate (PFDA), perfluorohexane sulfonate (PFHxS), perfluorooctanoate (PFOA), perfluorooctane sulfonate (PFOS), and perfluoroundecanoate (PFUnDA) in both locations. Perfluorononanoate (PFNA) decreased with time in Indian River Lagoon dolphins. Perfluorododecanoate (PFDoDA) concentrations significantly increased over time among female Indian River Lagoon dolphins. Regulation and phaseout of specific PFAS groups may have led to the decreasing levels of those PFAS and increasing levels of other replacement PFAS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.