Invadopodia are cell protrusions that mediate cancer cell extravasation but the microenvironmental cues and signaling factors that induce invadopodia formation during extravasation remain unclear. Using intravital imaging and loss of function experiments, we determined invadopodia contain receptors involved in chemotaxis, namely GABA receptor and EGFR. These chemotaxis capabilities are mediated in part by PAK1 which controls invadopodia responsiveness to ligands such as GABA and EGF via assembly, stability, and turnover of invadopodia in vivo. PAK1 knockdown rendered cells unresponsive to chemotactic stimuli present in the stroma, resulting in dramatically lower rates of cancer cell extravasation and metastatic colony formation compared to stimulated cancer cells. In an experimental mouse model of brain metastasis, inhibition of PAK1 significantly reduced overall tumor burden and reduced the average size of brain metastases. In summary, invadopodia contain chemotaxis receptors that can respond to microenvironmental cues to guide cancer cell extravasation, and when PAK1 is depleted, brain tropism of metastatic breast cancer cells is significantly reduced, blocking secondary colony growth at sites otherwise permissive for metastatic outgrowth.
Cellular magnetic resonance imaging (MRI) is an evolving field of imaging with strong translational and research potential. The ability to detect, track, and quantify cells in vivo and over time allows for studying cellular events related to disease processes and may be used as a biomarker for decisions about treatments and for monitoring responses to treatments. In this review, we discuss methods for labeling cells, various applications for cellular MRI, the existing limitations, strategies to address these shortcomings, and clinical cellular MRI.
Cellular MRI involves sensitive visualization of iron-labeled cells in vivo but cannot differentiate between dead and viable cells. Bioluminescence imaging (BLI) measures cellular viability, and thus we explored combining these tools to provide a more holistic view of metastatic cancer cell fate in mice. Human breast carcinoma cells stably expressing Firefly luciferase were loaded with iron particles, injected into the left ventricle, and BLI and MRI were performed on days 0, 8, 21 and 28. The number of brain MR signal voids (i.e., iron-loaded cells) on day 0 significantly correlated with BLI signal. Both BLI and MRI signals decreased from day 0 to day 8, indicating a loss of viable cells rather than a loss of iron label. Total brain MR tumour volume on day 28 also correlated with BLI signal. Overall, BLI complemented our sensitive cellular MRI technologies well, allowing us for the first time to screen animals for successful injections, and, in addition to MR measures of cell arrest and tumor burden, provided longitudinal measures of cancer cell viability in individual animals. We predict this novel multimodality molecular imaging framework will be useful for evaluating the efficacy of emerging anti-cancer drugs at different stages of the metastatic cascade.
Highlights d iT cells are unusually refractory to stress-and glucocorticoidinduced apoptosis d Chronic stress curbs both T H 1-and T H 2-type responses orchestrated by iT cells d Stress incapacitates iNKT cells via intrinsic glucocorticoid receptor signaling d Stress-elicited glucocorticoids impair the antitumor activity of iNKT cells
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.