Matrix metalloproteases (MMPs) play many important roles in normal and pathological remodeling processes including atherothrombotic disease, inflammation, angiogenesis and cancer. Traditionally, MMPs have been viewed as matrix-degrading enzymes, but recent studies have shown that they possess direct signaling capabilities. Platelets harbor several MMPs that modulate hemostatic function and platelet survival, however their mode of action remains unknown. We demonstrated that platelet MMP-1 activates protease-activated receptor-1 (PAR1) on the surface of platelets. Exposure of platelets to fibrillar collagen converts the surface-bound proMMP-1 zymogen to active MMP-1 which promotes aggregation through PAR1. Unexpectedly, we found that MMP-1 cleaved PAR1 at a novel site which strongly activated Rho-GTP pathways, cell shape change and motility, and MAPK signaling. Blockade of MMP1-PAR1 greatly curtailed thrombogenesis under arterial flow conditions and inhibited thrombosis in animals. These studies provide a link between matrix-dependent activation of metalloproteases and platelet-G protein signaling and identify MMP1-PAR1 as a new target for the prevention of arterial thrombosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.