Background The goal of this study was to evaluate marker-assisted selection (MAS) in broiler chickens using previously mapped gene regions associated with ascites syndrome incidence. The second-generation MAS products were assessed for impact on ascites phenotype and whether there were associated changes in important production traits. Previously, we used whole genome resequencing (WGR) to fine-map 28 chromosomal regions as associated with ascites phenotype in our experimental ascites broiler line (Relaxed, REL) based on a hypobaric chamber challenge. Genotypes for single nucleotide polymorphisms (SNPs) in mapped regions on chromosomes 2 and 22, were used for MAS in our REL line. After two generations, birds homozygous for the genotypes associated with resistance for both chromosomal regions were established. The MAS F2 generation was then compared to the REL line for ascites susceptibility and 25 production traits. Results Selection based on SNPs in the carboxypeptidase Q (CPQ, Gga2) and leucine rich repeat transmembrane neuronal 4 (LRRTM4, Gga22) gene regions resulted in a sex- and simulated altitude- dependent reduction of ascites incidence in two F2 cohorts of the MAS line. Comparisons of the F2 MAS and REL lines for production traits when reared at ambient pressure found no significant negative impacts for feed intake (FI), feed conversion ratio (FCR), or deboned part yields for either sex for two F2 cohorts. There were, however, improvements in the MAS for full-trial body weight gain (BWG), FCR, absolute and relative tender weights, and relative drumstick weight. Conclusions These results validate the mapping of the 28 chromosomal regions and demonstrate that fine mapping by WGR is an effective strategy for addressing a complex trait; it also stands as the first successful SNP-based selection program against a complex disease trait, such as ascites. The MAS line is comparable and, in some instances, superior, in growth performance to the REL control while being more resistant to ascites. This study indicates that MAS based on WGR can provide significant breeding potential in agricultural systems.
Background: The goal of this study was to evaluate marker-assisted selection (MAS) in broiler chickens using previously mapped gene regions associated with ascites syndrome incidence. The second-generation MAS products were assessed for impact on ascites phenotype and whether there were associated changes in important production traits. Previously, we used whole genome resequencing (WGR) to fine-map 28 chromosomal regions as associated with ascites phenotype in our experimental ascites broiler line (Relaxed, REL) based on a hypobaric chamber challenge. Genotypes for single nucleotide polymorphisms (SNPs) in mapped regions on chromosomes 2 and 22, were used for MAS in our REL line. After two generations, birds homozygous for the genotypes associated with resistance for both chromosomal regions were established. The MAS F 2 generation was then compared to the REL line for ascites susceptibility and 25 production traits. Results: Selection based on SNPs in the carboxypeptidase Q (CPQ, Gga2) and leucine rich repeat transmembrane neuronal 4 (LRRTM4, Gga22) gene regions resulted in a sex- and simulated altitude- dependent reduction of ascites incidence in two F 2 cohorts of the MAS line. Comparisons of the F 2 MAS and REL lines for production traits when reared at ambient pressure found no significant negative impacts for feed intake (FI), feed conversion ratio (FCR), or deboned part yields for either sex for two F 2 cohorts. There were, however, improvements in the MAS for full-trial body weight gain (BWG), FCR, absolute and relative tender weights, and relative drumstick weight. Conclusions: These results validate the mapping of the 28 chromosomal regions and demonstrate that fine mapping by WGR is an effective strategy for addressing a complex trait; it also stands as the first successful SNP-based selection program against a complex disease trait, such as ascites. The MAS line is comparable and, in some instances, superior, in growth performance to the REL control while being more resistant to ascites. This study indicates that MAS based on WGR can provide significant breeding potential in agricultural systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.