High sea surface temperatures caused global coral bleaching during [2015][2016]. During this thermal stress event, we quantified within-and among-species variability in bleaching severity for critical habitat-forming Acropora corals. The objective of this study was to understand the drivers of spatial and species-specific variation in the bleaching susceptibility of these corals, and to evaluate whether bleaching susceptibility under extreme thermal stress was consistent with that observed during less severe bleaching events. We surveyed and mapped Acropora corals at 10 sites (N = 596) around the Lizard Island group on the northern Great Barrier Reef. For each colony, bleaching severity was quantified using a new image analysis technique, and we assessed whether small-scale environmental variables (depth, microhabitat, competition intensity) and species traits (colony morphology, colony size, known symbiont clade association) explained variation in bleaching. Results showed that during severe thermal stress, bleaching of branching corals was linked to microhabitat features, and was more severe at reef edge compared with lagoonal sites. Bleaching severity worsened over a very short time-frame (∼1 week), but did not differ systematically with water depth, competition intensity, or colony size. At our study location, within-and among-species variation in bleaching severity was relatively low compared to the level of variation reported in the literature. More broadly, our results indicate that variability in bleaching susceptibility during extreme thermal stress is not consistent with that observed during previous bleaching events that have ranged in severity among globally dispersed sites, with fewer species escaping bleaching during severe thermal stress. In addition, shaded microhabitats can provide a refuge from bleaching which provides further evidence of the importance of topographic complexity for maintaining the biodiversity and ecosystem functioning of coral reefs.
Assisted migration is a controversial conservation measure that aims to protect threatened species by moving part of their population outside its natural range. Although this could save species from extinction, it also introduces a range of risks. The magnitude of the threat to recipient ecosystems has not been investigated quantitatively, despite being the most common criticism leveled at the action. We used an ensemble modeling framework to estimate the risks of assisted migration to existing species within ecosystems. With this approach, we calculated the consequences of an assisted migration project across a very large combination of translocated species and recipient ecosystems. We predicted the probability of a successful assisted migration and the number of local extinctions would result from establishment of the translocated species. Using an ensemble of 1.5 × 10 6 simulated 15-species recipient ecosystems, we estimated that translocated species will successfully establish in 83% of cases if introduced to stable, high-quality habitats. However, assisted migration projects were estimated to cause an average of 0.6 extinctions and 5% of successful translocations triggered 4 or more local extinctions. Quantifying the impacts to species within recipient ecosystems is critical to help managers weigh the benefits and negative consequences of assisted migration.
1. Reintroduction projects, which are an important tool in threatened species conservation, are becoming more complex, often involving the translocation of multiple species. Ecological theory predicts that the sequence and timing of reintroductions will play an important role in their success or failure. Following the removal of sheep, goats and feral cats, the Western Australian government is sequentially reintroducing 13 native fauna species to restore the globally important natural and cultural values of Dirk Hartog Island (DHI).2. We use ensembles of ecosystem models to compare 23 alternative reintroduction strategies on DHI, in Western Australia. The reintroduction strategies differ in the order, timing and location of releases on the island. Expert elicitation informed the model structure, allowing for use of different presumed species interaction networks which explicitly incorporated uncertainty in ecosystem dynamics.3. Our model ensembles predict that almost all of the species (~12.5 of 13, on average) will successfully establish in the ecosystem studied, regardless of which reintroduction strategy is undertaken. The project can therefore proceed with greater confidence and flexibility regarding the reintroduction strategy. However, the identity of the at-risk species varies between strategies, and depends on the structure of the species interaction network, which is quite uncertain. The model ensembles also offer insights into why some species fail to establish on DHI, predicting that most unsuccessful reintroductions will be the result of competitive interactions with extant species. Synthesis and applications.Our model ensembles allow for the comparison of outcomes between reintroduction strategies and between different species interaction networks. This framework allows for inclusion of high uncertainty in dynamics. Finally, an ensemble modelling approach also creates a foundation for formal adaptive management as reintroduction projects proceed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.