The polycystic kidney disease (PKD1) gene-encoded protein, polycystin-1, is developmentally regulated, with highest expression levels seen in normal developing kidneys, where it is distributed in a punctate pattern at the basal surface of ureteric bud epithelia. Overexpression in ureteric epithelial cell membranes of an inhibitory pMyr-GFP-PKD1 fusion protein via a retroviral (VVC) delivery system and microinjection into the ureteric bud lumen of embryonic day 11 mouse metanephric kidneys resulted in disrupted branching morphogenesis. Using confocal quantitative analysis, significant reductions were measured in the numbers of ureteric bud branch points and tips, as well as in the total ureteric bud length, volume and area, while significant increases were seen as dilations of the terminal branches, where significant increases in outer diameter and volumes were measured. Microinjection of an activating 5TM-GFP-PKD1 fusion protein had an opposite effect and showed significant increases in ureteric bud length and area. These are the first studies to experimentally manipulate polycystin-1 expression by transduction in the embryonic mouse kidney and suggest that polycystin-1 plays a critical role in the regulation of epithelial morphogenesis during renal development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.