<p> In this original study, we investigate the performances of machine learning algorithms on a neonatal sepsis detection task. We consider this work to be of great interest to both engineers and clinicians, as it uses non-invasive, already existing, vital signs monitoring signals in a population of very low birth weight infants at high risk of sepsis. Vital sign variability may indeed represent a general indicator of health and wellbeing and be helpful in the early detection of systematic inflammation such as sepsis. We used state of the art feature extraction technics and evaluate a large variety of binary classification models among which a neural network based generative model. The models were chosen from two main families: discriminative and generative. This enables a comprehensive study of different kinds of traditional and advanced binary classification algorithms.</p> <p> Our study reveals that advanced machine learning models are more robust to changes in the feature extraction pipeline, although linear classifiers have a comparable performance when the feature extraction is tuned. The advanced model performing the best is a neural network based generative model which is a hybrid generative and discriminative model. A large window length when computing the features is beneficial to almost all algorithms, indicating the relevance of frequency domain related features for the neonatal sepsis detection task.</p> <p> Overall we obtain a classification AUROC above 0.85, which makes our prediction models potentially relevant in clinical practice. This will enable earlier therapeutic interventions and thereby reduce morbidity and mortality in infants.</p>
Aim: Sepsis is a leading cause of morbidity and mortality in neonates. Early diagnosis is key but difficult due to non-specific signs. We investigate the predictive value of machine learning-assisted analysis of non-invasive, high frequency monitoring data and demographic factors to detect neonatal sepsis.Methods: Single centre study, including a representative cohort of 325 infants (2866 hospitalisation days). Personalised event timelines including interventions and clinical findings were generated. Time-domain features from heart rate, respiratory rate and oxygen saturation values were calculated and demographic factors included. Sepsis prediction was performed using Naïve Bayes algorithm in a maximum a posteriori framework up to 24 h before clinical sepsis suspicion.Results: Twenty sepsis cases were identified. Combining multiple vital signs improved algorithm performance compared to heart rate characteristics alone. This enabled a prediction of sepsis with an area under the receiver operating characteristics curve of 0.82, up to 24 h before clinical sepsis suspicion. Moreover, 10 h prior to clinical suspicion, the risk of sepsis increased 150-fold. Conclusion:The present algorithm using non-invasive patient data provides useful predictive value for neonatal sepsis detection. Machine learning-assisted algorithms are promising novel methods that could help individualise patient care and reduce morbidity and mortality.
<p> In this original study, we investigate the performances of machine learning algorithms on a neonatal sepsis detection task. We consider this work to be of great interest to both engineers and clinicians, as it uses non-invasive, already existing, vital signs monitoring signals in a population of very low birth weight infants at high risk of sepsis. Vital sign variability may indeed represent a general indicator of health and wellbeing and be helpful in the early detection of systematic inflammation such as sepsis. We used state of the art feature extraction technics and evaluate a large variety of binary classification models among which a neural network based generative model. The models were chosen from two main families: discriminative and generative. This enables a comprehensive study of different kinds of traditional and advanced binary classification algorithms.</p> <p> Our study reveals that advanced machine learning models are more robust to changes in the feature extraction pipeline, although linear classifiers have a comparable performance when the feature extraction is tuned. The advanced model performing the best is a neural network based generative model which is a hybrid generative and discriminative model. A large window length when computing the features is beneficial to almost all algorithms, indicating the relevance of frequency domain related features for the neonatal sepsis detection task.</p> <p> Overall we obtain a classification AUROC above 0.85, which makes our prediction models potentially relevant in clinical practice. This will enable earlier therapeutic interventions and thereby reduce morbidity and mortality in infants.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.