The regioselectively controlled introduction of chlorine into organic molecules is an important biological and chemical process. This importance derives from the observation that many pharmaceutically active natural products contain a chlorine atom. Flavin-dependent halogenases are one of the principal enzyme families responsible for regioselective halogenation of natural products. Structural studies of two flavin-dependent tryptophan 7-halogenases (PrnA and RebH) have generated important insights into the chemical mechanism of halogenation by this enzyme family. These proteins comprise two modules: a flavin adenine dinucleotide (FAD)-binding module and a tryptophan-binding module. Although the 7-halogenase studies advance a hypothesis for regioselectivity, this has never been experimentally demonstrated. PyrH is a tryptophan 5-halogenase that catalyzes halogenation on tryptophan C5 position. We report the crystal structure of a tryptophan 5-halogenase (PyrH) bound to tryptophan and FAD. The FAD-binding module is essentially unchanged relative to PrnA (and RebH), and PyrH would appear to generate the same reactive species from Cl(-), O(2), and 1,5-dihydroflavin adenine dinucleotide. We report additional mutagenesis data that extend our mechanistic understanding of this process, in particular highlighting a strap region that regulates FAD binding, and may allow communication between the two modules. PyrH has a significantly different tryptophan-binding module. The data show that PyrH binds tryptophan and presents the C5 atom to the reactive chlorinating species, shielding other potential reactive sites. We have mutated residues identified by structural analysis as recognizing the tryptophan in order to confirm their role. This work establishes the method by which flavin-dependent tryptophan halogenases regioselectively control chlorine addition to tryptophan. This method would seem to be general across the superfamily.
Embryonic fibroblasts from S1P (sphingosine-1-phosphate) lyase-deficient mice [Sgpl1-/- MEFs (mouse embryonic fibroblasts)] are characterized by intracellular accumulation of S1P, elevated cytosolic [Ca2+]i and enhanced Ca2+ storage. Since S1P, produced by sphingosine kinase 2 in the nucleus of MCF-7 cells, inhibited HDACs (histone deacetylases) [Hait, Allegood, Maceyka, Strub, Harikumar, Singh, Luo, Marmorstein, Kordula, Milstein et al. (2009) Science 325, 1254-1257], in the present study we analysed whether S1P accumulated in the nuclei of S1P lyase-deficient MEFs and caused HDAC inhibition. Interestingly, nuclear concentrations of S1P were disproportionally elevated in Sgpl1-/- MEFs. HDAC activity was reduced, acetylation of histone 3-Lys9 was increased and the HDAC-regulated gene p21 cyclin-dependent kinase inhibitor was up-regulated in these cells. Furthermore, the expression of HDAC1 and HDAC3 was reduced in Sgpl1-/- MEFs. In wild-type MEFs, acetylation of histone 3-Lys9 was increased by the S1P lyase inhibitor 4-deoxypyridoxine. The non-specific HDAC inhibitor trichostatin A elevated basal [Ca2+]i and enhanced Ca2+ storage, whereas the HDAC1/2/3 inhibitor MGCD0103 elevated basal [Ca2+]i without influence on Ca2+ storage in wild-type MEFs. Overexpression of HDAC1 or HDAC2 reduced the elevated basal [Ca2+]i in Sgpl1-/- MEFs. Taken together, S1P lyase-deficiency was associated with elevated nuclear S1P levels, reduced HDAC activity and down-regulation of HDAC isoenzymes. The decreased HDAC activity in turn contributed to the dysregulation of Ca2+ homoeostasis, particularly to the elevated basal [Ca2+]i, in Sgpl1-/- MEFs.
The recent success of FTY720 (Fingolimod, Gilenya(®)), which has been approved for the treatment of relapsing-remitting multiple sclerosis and is the first-in-class sphingosine-1-phosphate (S1P) receptor modulating drug, has boosted the interest in further drug development in this area. Several selective S1P1 receptor-modulating drugs are being investigated in clinical trials for the treatment of diverse autoimmune disorders. Sphingosine kinase inhibitors are under development for the treatment of cancer, aberrant angiogenesis and inflammatory diseases; an inhibitor of SK2 with relatively low affinity is being analysed in patients with advanced solid tumours. While an indirect S1P lyase inhibitor has just failed the proof of concept in patients with rheumatoid arthritis, S1P lyase is still a promising target for the treatment of inflammatory and autoimmune diseases. Another approach is the development of S1P-scavenging or -clearing agents, including a monoclonal S1P antibody that has successfully passed phase I clinical trials and will be further developed for age-related macular degeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.