In order to test the possibility of enhancing the production of pharmaceutically valuable scopolamine in transgenic cultures, the 35S-h6h transgene that codes for the enzyme hyoscyamine-6b-hydroxylase (EC 1.14.11.11) was introduced into Hyoscyamus muticus L. strain Cairo (Egyptian henbane). This plant was chosen for its capability to produce very high amounts of tropane alkaloids (up to 6% of the dry weight in the leaves of mature plant). To our knowledge, this is the ®rst time such a large population of transgenic cultures has been studied at the morphological, chemical and genetic levels. A great variation was observed in the tropane alkaloid production among the 43 positive transformants. The best clone (KB7) produced 17 mg/l scopolamine, which is over 100 times more than the control clones. However, conversion of hyoscyamine to scopolamine was still incomplete. The expression of h6h was found to be proportional to the scopolamine production, and was the main reason behind the variation in the scopolamine/hyoscyamine ratio in the hairy-root clones. These results indicate that H. muticus strain Cairo has a potential for even more enhanced scopolamine production with more ecient gene-expression systems.
In order to increase the production of the pharmaceuticals hyoscyamine and scopolamine in hairy root cultures, a binary vector system was developed to introduce the T-DNA of the Ri plasmid together with the tobacco pmt gene under the control of CaMV 35S promoter, into the genome of Datura metel and Hyoscyamus muticus. This gene codes for putrescine:SAM N-methyltransferase (PMT; EC. 2.1.1.53), which catalyses the first committed step in the tropane alkaloid pathway. Hairy root cultures overexpressing the pmt gene aged faster and accumulated higher amounts of tropane alkaloids than control hairy roots. Both hyoscyamine and scopolamine production were improved in hairy root cultures of D. metel, whereas in H. muticus only hyoscyamine contents were increased by pmt gene overexpression. These roots have a high capacity to synthesize hyoscyamine, but their ability to convert it into scopolamine is very limited. The results indicate that the same biosynthetic pathway in two related plant species can be differently regulated, and overexpression of a given gene does not necessarily lead to a similar accumulation pattern of secondary metabolites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.