Spatial cognitive skills deteriorate with the increasing use of automated GPS navigation and a general decrease in the ability to orient in space might have further impact on independence, autonomy, and quality of life. In the present study we investigate whether modified navigation instructions support incidental spatial knowledge acquisition. A virtual driving environment was used to examine the impact of modified navigation instructions on spatial learning while using a GPS navigation assistance system. Participants navigated through a simulated urban and suburban environment, using navigation support to reach their destination. Driving performance as well as spatial learning was thereby assessed. Three navigation instruction conditions were tested: (i) a control group that was provided with classical navigation instructions at decision points, and two other groups that received navigation instructions at decision points including either (ii) additional irrelevant information about landmarks or (iii) additional personally relevant information (i.e., individual preferences regarding food, hobbies, etc.), associated with landmarks. Driving performance revealed no differences between navigation instructions. Significant improvements were observed in both modified navigation instruction conditions on three different measures of spatial learning and memory: subsequent navigation of the initial route without navigation assistance, landmark recognition, and sketch map drawing. Future navigation assistance systems could incorporate modified instructions to promote incidental spatial learning and to foster more general spatial cognitive abilities. Such systems might extend mobility across the lifespan.
In this article, we examine the performance of different eye blink detection algorithms under various constraints. The goal of the present study was to evaluate the performance of an electrooculogram- and camera-based blink detection process in both manually and conditionally automated driving phases. A further comparison between alert and drowsy drivers was performed in order to evaluate the impact of drowsiness on the performance of blink detection algorithms in both driving modes. Data snippets from 14 monotonous manually driven sessions (mean 2 h 46 min) and 16 monotonous conditionally automated driven sessions (mean 2 h 45 min) were used. In addition to comparing two data-sampling frequencies for the electrooculogram measures (50 vs. 25 Hz) and four different signal-processing algorithms for the camera videos, we compared the blink detection performance of 24 reference groups. The analysis of the videos was based on very detailed definitions of eyelid closure events. The correct detection rates for the alert and manual driving phases (maximum 94%) decreased significantly in the drowsy (minus 2% or more) and conditionally automated (minus 9% or more) phases. Blinking behavior is therefore significantly impacted by drowsiness as well as by automated driving, resulting in less accurate blink detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.