The von Hippel-Lindau (VHL) tumor suppressor protein is the substrate binding subunit of the CBC VHL E3 ubiquitin ligase complex. Mutations in the VHL gene cause a variety of tumors with complex genotype/ phenotype correlations. Type 2A and type 2B VHL disease are characterized by a low or high risk of renal cell carcinoma, respectively. To investigate the molecular basis underlying the difference between disease types 2A and 2B, we performed a detailed biochemical analysis of the two most frequent type 2A mutations, Y98 H and Y112 H, in comparison to type 2B mutations in the same residues, Y98N and Y112N. While none of these mutations affected the assembly of CBC VHL complexes, the type 2A mutant proteins exhibited higher stabilities at physiological temperature. Moreover, the type 2A mutant proteins possessed higher binding affinities for the key cellular substrate, hypoxia-inducible transcription factor 1 (HIF-1a). Consistent with these results, type 2A but not type 2B mutant VHL proteins retained significant ubiquitin ligase activity towards HIF-1a in vitro. We propose that this residual ubiquitin ligase activity is sufficient to suppress renal cell carcinogenesis in vivo.
The von Hippel-Lindau tumor suppressor protein (pVHL) is inactivated in the hereditary cancer syndrome von Hippel-Lindau disease and in the majority of sporadic renal carcinomas. pVHL is the substrate-binding subunit of the CBCVHL ubiquitin ligase complex that negatively regulates cell growth by promoting the degradation of hypoxia-inducible transcription factor subunits (HIF1/2α). Proteomics-based identification of novel pVHL substrates is hampered by their short half-life and low abundancy in mammalian cells. The usefulness of yeast two-hybrid (Y2H) approaches, on the other hand, has been limited by the failure of pVHL to adopt its native structure and by the absence of prolylhydroxylase activity critical for pVHL substrate recognition. Therefore, we modified the Y2H system to faithfully reconstitute the physical interaction between pVHL and its substrates. Our approach relies on the coexpression of pVHL with the cofactors Elongin B and Elongin C and with HIF1/2α prolylhydroxylases. In a proof-of-principle Y2H screen, we identified the known substrates HIF1/2α and new candidate substrates including diacylglycerol kinase iota, demonstrating that our strategy allows detection of stable interactions between pVHL and otherwise elusive cellular targets. Additional future applications may include structure/function analyses of pVHL-HIF1/2α binding and screens for therapeutically relevant compounds that either stabilize or disrupt this interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.