ObjectivesTo integrate mRNA and miRNA expression profiles of mucoepidermoid carcinomas (MECs) and normal salivary gland (NSGs) tissue samples and identify potential drivers.Material and MethodsGene and miRNA expression arrays were performed in 35 MECs and six NSGs.ResultsWe found 46 differentially expressed (DE) miRNAs and 3,162 DE mRNAs. Supervised hierarchical clustering analysis of the DE transcripts revealed two clusters in both miRNA and mRNA profiles, which distinguished MEC from NSG samples. The integrative miRNA-mRNA analysis revealed a network comprising 696 negatively correlated interactions (44 miRNAs and 444 mRNAs) involving cell signaling, cell cycle, and cancer-related pathways. Increased expression levels of miR-205-5p and miR-224-5p and decreased expression levels of miR-139-3p, miR-145-3p, miR-148a-3p, miR-186-5p, miR-338-3p, miR-363-3p, and miR-4324 were significantly related to worse overall survival in MEC patients. Two overexpressed miRNAs in MEC (miR-22 and miR-205) were selected for inhibition by the CRISPR-Cas9 method. Cell viability, migration, and invasion assays were performed using an intermediate grade MEC cell line. Knockout of miR-205 reduced cell viability and enhanced ZEB2 expression, while miR-22 knockout reduced cell migration and invasion and enhanced ESR1 expression. Our results indicate a distinct transcriptomic profile of MEC compared to NSG, and the integrative analysis highlighted miRNA-mRNA interactions involving cancer-related pathways, including PTEN and PI3K/AKT.ConclusionThe in vitro functional studies revealed that miR-22 and miR-205 deficiencies reduced the viability, migration, and invasion of the MEC cells suggesting they are potential oncogenic drivers in MEC.
The incidence of head and neck squamous cell carcinoma (HNSCC) is increasing and the conventional treatments for this form of cancer can be tough. Despite the success of existing immunotherapies in some HNSCC patients, many do not respond to this type of treatment. Thus, the development of novel anti-cancer therapies should be prioritized. In the current study, the anticancer activity of a panel of novel compounds, herein termed marine product mimics (MPMs), against HNSCC cell lines is explored. The previously reported compound MPM-1, which is structurally related to the novel MPMs, was shown to have promising effects on the HNSCC cell line HSC-3. The results from the current study indicate that the novel MPMs are more potent than MPM-1 but cause a similar type of cell death. The results indicated that the MPMs must cross through the cell membrane to exert their action and that they are lysosomotropic. Further experiments showed that some of the MPMs could induce phosphorylation of eukaryotic initiation factor 2α (eIF2α) in HSC-3 and UT-SCC-24A cells, which indicates that they can activate the integrated stress response that is strongly associated with immunogenic cell death. Cell surface expression of calreticulin and release of HMGB1 and ATP, which are all hallmarks of immunogenic cell death, was also demonstrated in HSC-3 and UT-SCC-24A cells treated with MPMs. This suggests that the MPMs are interesting candidates for future HNSCC cancer therapies.
Background Head and neck squamous cell carcinoma (HNSCC) is a common cancer with a high heterogeneity and few approved treatments. HNSCC is one of the least explored areas for precision oncology. In this study, we aimed to test the reliability of our three established rapid cancer systemic treatment-testing assays: human tumor-derived matrix (Myogel)-coated well-plates, zebrafish xenografts, and 3D microfluidic chips. Methods Chemo-, radio- and targeted-therapy testing in Myogel-coated wells and zebrafish xenografts was conducted nine times using five samples; two primary and three metastatic tumour samples from three HNSCC patients. Peripheral blood mononuclear cells (PBMNCs) were isolated from the patients’ blood. The response of the tumour cells to radio-, chemo-, and targeted therapy was tested using Myogel-coated wells and zebrafish larvae xenografts. The tumour cell’s’ response to immunotherapy was tested using 3D microfluidic chips. The cells’ sensitivity to the treatments was compared with the patients’ clinical response. Primary and metastatic tumour tissue-derived DNA samples from two patients underwent whole exome sequencing to compare the mutational profiles of the samples. Results Test results were in line with patients’ responses in 7/9 (77%) zebrafish xenograft assays and 5/9 (55%) Myogel-coated wells assays. Immunotherapy testing was done using one metastatic patient sample which matched the patients’ response. Differences in responses to treatments between primary and metastatic samples of the same patient were detected in 50% of the zebrafish larvae assays. Conclusions Our results show the potential of using personalized cancer treatment testing assays – specifically zebrafish xenografts that showed a 100% sensitivity in predicting the true positive response – on HNSCC patient samples.
Objective Head and neck squamous cell carcinoma (HNSCC) is a highly aggressive tumor with a 5-year mortality rate of ~ 50%. New in vitro methods are needed for testing patients’ cancer cell response to anti-cancer treatments. We aimed to investigate how the gene expression of fresh carcinoma tissue samples and freshly digested single cancer cells change after short-term cell culturing on plastic, Matrigel or Myogel. Additionally, we studied the effect of these changes on the cancer cells’ response to anti-cancer treatments. Materials/methods Fresh tissue samples from HNSCC patients were obtained perioperatively and single cells were enzymatically isolated and cultured on either plastic, Matrigel or Myogel. We treated the cultured cells with cisplatin, cetuximab, and irradiation; and performed cell viability measurement. RNA was isolated from fresh tissue samples, freshly isolated single cells and cultured cells, and RNA sequencing transcriptome profiling and gene set enrichment analysis were performed. Results Cancer cells obtained from fresh tissue samples changed their gene expression regardless of the culturing conditions, which may be due to the enzymatic digestion of the tissue. Myogel was more effective than Matrigel at supporting the upregulation of pathways related to cancer cell proliferation and invasion. The impacts of anti-cancer treatments varied between culturing conditions. Conclusions Our study showed the challenge of in vitro cancer drug testing using enzymatic cell digestion. The upregulation of many targeted pathways in the cultured cells may partially explain the common clinical failure of the targeted cancer drugs that pass the in vitro testing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.