In mandibulate arthropods, the primary olfactory centers, termed olfactory lobes in crustaceans, are typically organized in distinct fields of dense synaptic neuropils called olfactory glomeruli. In addition to olfactory sensory neuron terminals and their postsynaptic efferents, the glomeruli are innervated by diverse neurochemically distinctive interneurons. The functional morphology of the olfactory glomeruli is understudied in crustaceans compared with insects and even less well understood and described in a particular crustacean subgroup, the Peracarida, which embrace, for example, Amphipoda and Isopoda. Using immunohistochemistry combined with confocal laser scanning microscopy, we analyzed the neurochemistry of the olfactory pathway in the amphipod Parhyale hawaiensis. We localized the biogenic amines serotonin and histamine as well as the neuropeptides RFamide, allatostatin, orcokinin, and SIFamide.As for other classical neurotransmitters, we stained for γ-aminobutyric acid and glutamate decarboxylase and used choline acetyltransferase as indicator for acetylcholine.Our study is another step in understanding principles of olfactory processing in crustaceans and can serve as a basis for understanding evolutionary transformations of crustacean olfactory systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.