Meeting the defined greenhouse gas (GHG) reduction targets in Germany is only possible by switching to renewable technologies in the energy sector. A major share of that reduction needs to be covered by the heat sector, which accounts for ∼ 35% of the energy based emissions in Germany. Biomass is the renewable key player in the heterogeneous heat sector today. Its properties such as weather independency, simple storage and flexible utilization open up a wide field of applications for biomass. However, in a future heat sector fulfilling GHG reduction targets and energy sectors being increasingly connected: which bioenergy technology concepts are competitive options against other renewable heating systems? In this paper, the cost optimal allocation of the limited German biomass potential is investigated under longterm scenarios using a mathematical optimization approach. The model results show that bioenergy can be a competitive option in the future. Especially the use of biomass from residues can be highly competitive in hybrid combined heat and power (CHP) pellet combustion plants in the private household sector. However, towards 2050, wood based biomass use in high temperature industry applications is found to be the most cost efficient way to reduce heat based emissions by 95% in 2050.
Anaerobic digestion to produce biogas is an important decentralised renewable energy technology. Production varies extensively between different countries and within countries, as biogas production is heavily dependent on local and regional feedstocks. In Germany, distinct regional differences can be observed. Therefore, understanding the kinds of biogas systems operating within a region is crucial to determine their greenhouse gas (GHG) mitigation potential and carbon neutrality. This is the first study to conduct an integrated life cycle assessment of biogas configurations in the landscape (biogas plants and their biomass catchments) for an entire region. RELCA a 'REgional Life Cycle inventory Assessment' approach was used to model the GHG mitigation potential of 425 biogas plants in the region of Central Germany (CG), aggregated to nine biogas clusters, based on feedstock mix (e.g. animal manures and energy crops) and installed capacity. GHG emission profiles were generated to compare and to identify the role of GHG credits and size of installed capacity on the mitigation performance of the regional biogas clusters. We found that smaller scaled slurry dominant clusters had significantly better GHG mitigation performance (−0.1 to −0.2 kg CO 2eq kWh el −1 ), than larger energy crop dominant (EC dom ) clusters (0.04-0.16 kg CO 2eq kWh el −1 ), due to lower cultivation emissions and larger credits for avoided slurry storage. Thus, for the CG region larger EC dom clusters should be targeted first, to support GHG mitigation improvements to the overall future electricity supplied by the regional biogas systems. With the addition of GHG credits, the CG region is producing biogas with GHG savings (−0.15 kg CO 2eq kWh el −1 , interquartile range: 0.095 kg CO 2eq kWh el −1 ). This infers that biogas production, as a waste management strategy for animal manures, could have important ramifications for future policy setting and national inventory accounting.
K E Y W O R D Sbiogas, greenhouse gas, life cycle, livestock, regional, spatial, waste managment 792 | O'KEEFFE Et al.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.