Rotaviruses infect humans and animals and are a main cause of diarrhea. They are non-enveloped viruses with a genome of 11 double-stranded RNA segments. Based on genome analysis and amino acid sequence identities of the capsid protein VP6, the rotavirus species A to J (RVA-RVJ) have been defined so far. In addition, rotaviruses putatively assigned to the novel rotavirus species K (RVK) and L (RVL) have been recently identified in common shrews (Sorex araneus), based on partial genome sequences. Here, the complete genome sequence of strain KS14/0241, a prototype strain of RVL, is presented. The deduced amino acid sequence for VP6 of this strain shows only up to 47% identity to that of RVA to RVJ reference strains. Phylogenetic analyses indicate a clustering separated from the established rotavirus species for all 11 genome segments of RVL, with the closest relationship to RVH and RVJ within the phylogenetic RVB-like clade. The non-coding genome segment termini of RVL showed conserved sequences at the 5′-end (positive-sense RNA strand), which are common to all rotaviruses, and those conserved among the RVB-like clade at the 3′-end. The results are consistent with a classification of the virus into a novel rotavirus species L.
The hepatitis E virus (HEV) can cause acute and chronic hepatitis in humans. Infections with the zoonotic HEV genotype 3, which can be transmitted from infected wild boar and deer to humans, are increasingly detected in Europe. To investigate the spatiotemporal HEV infection dynamics in wild animal populations, a study involving 3572 samples of wild boar and three deer species from six different geographic areas in Germany over a 4-year period was conducted. The HEV-specific antibody detection rates increased between 2013-2014 and 2016-2017 in wild boar from 9.5% to 22.8%, and decreased in deer from 1.1% to 0.2%. At the same time, HEV-RNA detection rates increased in wild boar from 2.8% to 13.3% and in deer from 0.7% to 4.2%. Marked differences were recorded between the investigated areas, with constantly high detection rates in one area and new HEV introductions followed by increasing detection rates in others. Molecular typing identified HEV subtypes 3c, 3f, 3i and a putative new subtype related to Italian wild boar strains. In areas, where sufficient numbers of positive samples were available for further analysis, a specific subtype dominated over the whole observation period. Phylogenetic analysis confirmed the close relationship between strains from the same area and identified closely related human strains fromThis is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
Infection with hepatitis E virus (HEV) can cause acute and chronic hepatitis in humans. The HEV genotype 3 can be zoonotically transmitted from animals to humans, with wild boars representing an important reservoir species. Cell culture isolation of HEV is generally difficult and mainly described for human isolates so far. Here, five sera and five liver samples from HEV-RNA-positive wild boar samples were inoculated onto PLC/PRF/5 cells, incubated for 3 months and thereafter passaged for additional 6 weeks. As demonstrated by RT-qPCR, immunofluorescence and immune electron microscopy, virus was successfully isolated from two liver samples, which originally contained high HEV genome copy numbers. Both isolates showed slower growth than the culture-adapted HEV strain 47832c. In contrast to this strain, the isolated strains had no insertions in their hypervariable genome region. Next generation sequencing using an HEV sequence-enriched library enabled full genome sequencing. Strain Wb108/17 belongs to subtype 3f and strain Wb257/17 to a tentative novel subtype recently described in Italian wild boars. The results indicate that HEV can be successfully isolated in cell culture from wild boar samples containing high HEV genome copy numbers. The isolates may be used further to study the zoonotic potential of wild boar-derived HEV subtypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.