Cystatins, a family of structurally related cysteine proteinase inhibitors, have proved to be useful model system to study amyloidogenesis. We have extended previous studies of the kinetics of amyloid-fibril formation by human stefin B (cystatin B) and some of its mutants, and proposed an improved model for the reaction. Overall, the observed kinetics follow the nucleation and growth behavior observed for many other amyloidogenic proteins. The minimal kinetic scheme that best fits measurements of changes in CD and thioflavin T fluorescence as a function of protein concentration and temperature includes nucleation (modeled as N(I) irreversible transitions with equivalent rates (k(I)), which fitted with N(I) = 64), fibril growth and nonproductive oligomerization, best explained by an off-pathway state with a rate-limiting escape rate. Three energies of activation were derived from global fitting to the minimal kinetic scheme, and independently through the fitting of the individual component rates. Nucleation was found to be a first-order process within an oligomeric species with an enthalpy of activation of 55 +/- 4 kcal mol(-1). Fibril growth was a second-order process with an enthalpy of activation (27 +/- 5 kcal mol(-1)), which is indistinguishable from that of tetramer formation by cystatins, which involves limited conformational changes including proline trans to cis isomerization. The highest enthalpy of activation (95 +/- 5 kcal mol(-1) at 35 degrees C), characteristic of a substantial degree of unfolding as observed prior to domain-swapping reactions, equated with the escape rate of the off-pathway oligomeric state.
As shown before, human stefin B (cystatin B) populates two partly unfolded species, a native-like state at pH 4.8 and a structured molten globule state at pH 3.3 (high ionic strength), from each of which amyloid fibrils grow. Here, we show that the fibrils obtained at pH 3.3 differ from those at pH 4.8 and that those obtained at pH 3.3 (protofibrils) do not transform readily to mature fibrils. In addition we show that amorphous aggregates are also a source of fibrils. The kinetics of amyloid fibril formation at different trifluoroethanol (TFE) concentrations were measured. TFE accelerates fibril growth at predenaturational concentrations of the alcohol. At concentrations higher than 10%, the fibrillar yield decreases proportionately as the population of an all alpha-helical, denatured form of the protein increases. At an optimum TFE concentration, the lag and the growth phases are observed, similarly to some other amyloidogenic proteins. Morphology of the protein species at the beginning and the end of the reactions was observed using atomic force microscopy and transmission electron microscopy. Final fibril morphologies differ depending on solvent conditions.
To contribute to the question of the putative role of cystatins in Alzheimer disease and in neuroprotection in general, we studied the interaction between human stefin B (cystatin B) and amyloid--(1-40) peptide (A). Using surface plasmon resonance and electrospray mass spectrometry we were able to show a direct interaction between the two proteins. As an interesting new fact, we show that stefin B binding to A is oligomer specific. The dimers and tetramers of stefin B, which bind A, are domain-swapped as judged from structural studies. Consistent with the binding results, the same oligomers of stefin B inhibit A fibril formation. When expressed in cultured cells, stefin B co-localizes with A intracellular inclusions. It also co-immunoprecipitates with the APP fragment containing the A epitope. Thus, stefin B is another APP/A-binding protein in vitro and likely in cells.Neurodegenerative diseases present a huge burden in the developed world's aging population. They are all in one way or another connected to aberrant protein folding and aggregation of the proteins involved (1). Various protein conformational disorders of the central and peripheral nervous system are known, which often appear sporadically but also run in families. These are among others: Parkinson and Alzheimer diseases, dementia with Lewy bodies, vascular and fronto-temporal dementia, and amyotrophic lateral sclerosis.The A peptide implicated in Alzheimer disease pathology is a cleavage product of the membrane A precursor protein (APP).3 It is the main constituent of extracellular amyloid plaques, however, together with its oligomers, it also resides intracellularly (2). It has been shown that A oligomers prepared in vitro and those extracted from living cells exert cytotoxicity and cause symptoms of reversible memory loss in animal models (3). Amyloid protein oligomers have special structural properties, which are reflected in a common antioligomer antibody (4). This antibody not only binds the oligomers against which it was raised but also binds chaperones and some other proteins involved in disaggregating protein aggregates in cells (5). A-binding proteins, the so called "amateur chaperones," were suggested to have a potential in Alzheimer disease therapy (6, 7).It has been shown before that human cystatin C is an A-binding protein (8). Cystatins are single chain proteins that inhibit cysteine cathepsins (9). Human stefin B (also known as cystatin B) is a member of subfamily A of cystatins, classified as family I25 in the MEROPS scheme (10). Stefin B, a protein of 98 amino acid residues and 1 Cys, is predominantly intracellular, whereas cystatin C, a protein of 120 residues and 2 disulfide bonds, is a secretory protein. Three-dimensional structures of stefins and cystatin C have been determined, among others, the solution structure of stefin A (11) and cystatin C (12, 13).Human cystatin C has been found as a constituent of senile plaques of Alzheimer disease patients (14) and stefins A and B have also been reported to localize to a...
We show that human stefin B, a protease inhibitor from the family of cystatins, is a copper binding protein, unlike stefin A. We have used isothermal titration calorimetry to directly monitor the binding event at pH 7 and pH 5. At pH 7 stefin B shows a picomolar affinity for copper but at pH 5 the affinity is in the nanomolar range. There is no difference in the affinity of copper between the wildtype stefin B (E31 isoform) and a variant (Y31 isoform), whereas the mutant (P79S), which is tetrameric, does not bind copper. The conformation of stefin B remains unaltered by copper binding. It is known that below pH 5 stefin B undergoes a conformational change and amyloid fibril formation. We show that copper binding inhibits the amyloid fibril formation and, to a lesser degree, the initial aggregation. Similarities to and differences from other copper binding amyloidogenic proteins are discussed.
Alternative functions, apart from cathepsins inhibition, are being discovered for stefin B. Here, we investigate its role in vesicular trafficking and autophagy. Astrocytes isolated from stefin B knock-out (KO) mice exhibited an increased level of protein aggregates scattered throughout the cytoplasm. Addition of stefin B monomers or small oligomers to the cell medium reverted this phenotype, as imaged by confocal microscopy. To monitor the identity of proteins embedded within aggregates in wild type (wt) and KO cells, the insoluble cell lysate fractions were isolated and analyzed by mass spectrometry. Chaperones, tubulins, dyneins, and proteosomal components were detected in the insoluble fraction of wt cells but not in KO aggregates. In contrast, the insoluble fraction of KO cells exhibited increased levels of apolipoprotein E, fibronectin, clusterin, major prion protein, and serpins H1 and I2 and some proteins of lysosomal origin, such as cathepsin D and CD63, relative to wt astrocytes. Analysis of autophagy activity demonstrated that this pathway was less functional in KO astrocytes. In addition, synthetic dosage lethality (SDL) gene interactions analysis in Saccharomyces cerevisiae expressing human stefin B suggests a role in transport of vesicles and vacuoles These activities would contribute, directly or indirectly to completion of autophagy in wt astrocytes and would account for the accumulation of protein aggregates in KO cells, since autophagy is a key pathway for the clearance of intracellular protein aggregates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.