The sensory quality and chemical constituents of juices from seven sea buckthorn (Hippophaerhamnoides L.) varieties were studied in two consecutive seasons. The juices were generally described as sour and astringent, with low sweetness and fruity flavor. The differences in sensory quality as well as in chemical composition between samples and years were significant (p < 0.05) in most parameters studied. The Chuiskaya variety was described as the sweetest, with the strongest fruity flavor, whereas the varieties Avgustinka, Botanicheskaya, Trofimovskaya, and Raisa were the sourest and most astringent. Total sugar (fructose and glucose) varied from 1.9 to 7.1 g/100 mL in juice, total acid (malic and quinic acids) from 3.1 to 5.1 g/100 mL, vitamin C from 29 to 176 mg/100 mL, and pulp oil from 0.7 to 3.6%. The soluble solids were between 7.4 and 12.6, the pH between 2.7 and 2.9, and the titrable acidity between 2.0 and 3.7. The redness was highest on Avgustinka and Raisa, but there were no differences in yellowness. Total sugar and the sugar/acid ratio correlated positively with sweetness and negatively with sourness and astringency, whereas total acid and titrable acidity correlated positively with sourness and astringency and negatively with sweetness.
Fractionation of black currant ( Ribes nigrum ) by juice pressing, four ethanol extractions, ethanol evaporation, and supercritical fluid extraction was studied. Phenolic compounds, sugars, and acids of the fractions were analyzed by high-performance liquid chromatography and gas chromatography. Sensory properties of the fractions were studied using generic descriptive analysis. Most of the sugars and acids were located in the juice, whereas the majority of the phenolic compounds were in the press residue. Ethanol extracted nearly all of the phenolic compounds from the press residue, leaving only fibers and seeds. The juice was dominant in most of the sensory attributes, whereas the extracts were perceived as most astringent. Three flavonol glycosides [kaempferol-3-O-(6''-malonyl)glucoside, myricetin-3-O-galactoside, and an unknown kaempferol glycoside] were discovered to be the compounds especially contributing to astringency. Ethanol extraction appeared to be an efficient and simple way to isolate phenolic compounds from black currant juice press residue.
A fast, one-step gas chromatographic method was developed to analyze trimethylsilyl (TMS) derivatives of sugars, fruit acids, and ascorbic acid in sea buckthorn (Hippohaë rhamnoides L.) berries. The method was applied to berry press juice of sea buckthorn of different origins grown in Finland during the 2003 and 2004 seasons. The method gave reliable results for D-fructose, D-glucose, ethyl-D-glucose, and malic, quinic, and ascorbic acids, which are the major sugars and acids in sea buckthorn juice. For the first time in sea buckthorn and evidently in any berry, the presence of ethyl beta-D-glucopyranoside is reported. The structure of ethyl glucose was verified by high-performance liquid chromatography (HPLC), gas chromatography (GC), MS, and NMR analyses of both the isolated and the synthesized compounds. In the GC method, vitamin C was analyzed as ascorbic acid only, and dehydroascorbic acid was thus not taken into account.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.